Skip to main content Skip to main navigation menu Skip to site footer
Review
Published: 30-03-2023

Major aspects of mesenchymal stem cell signaling and differentiation into osteoblasts in the optimization of bone formation for dental implant: a systematic review

UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil / UNIPOS - Post graduate and continuing education, Dentistry department, São José do Rio Preto, São Paulo, Brazil
UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil / UNIPOS - Post graduate and continuing education, Dentistry department, São José do Rio Preto, São Paulo, Brazil
UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil / UNIPOS - Post graduate and continuing education, Dentistry department, São José do Rio Preto, São Paulo, Brazil
UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil / UNIPOS - Post graduate and continuing education, Dentistry department, São José do Rio Preto, São Paulo, Brazil
UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil / UNIPOS - Post graduate and continuing education, Dentistry department, São José do Rio Preto, São Paulo, Brazil
UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil / UNIPOS - Post graduate and continuing education, Dentistry department, São José do Rio Preto, São Paulo, Brazil
Bone regeneration Biomaterials Biological membranes Dental implants

Abstract

Introduction: In recent decades, the number of dental implant procedures has shown significant growth worldwide, reaching about one million dental implants per year. In Brazil, in recent decades, there has been a very rapid evolution in implant dentistry with high success rates. Several materials can be used as a bone graft, each with different properties, for example, regarding neovascularization. Guided bone regeneration favors the formation of new bone tissue. When grafting procedures are required, the focus is often on the type of biomaterial to be used and the success and predictability of the results. Objective: It was to carry out a concise systematic review of bone regeneration processes using biomaterials and the main molecular and cellular constituents for implant dentistry. Methods: The survey was carried out from January to February 2023 in the Scopus, PubMed, Science Direct, and Scielo databases, using older scientific articles with a gold standard reference up to 2022. The quality of the studies was based on the GRADE instrument and the risk of bias by the Cochrane instrument. Results and Conclusion: It was founded on 128 studies that underwent eligibility analysis. The final sample had 34 eligible studies that were described in the systematic review. Most studies showed homogeneity in their results, with X2=89.8.8% <50%. Due to bone regeneration and biological barriers in graft surgeries, there has been a technological growth of these materials as they point to potential tools for treating bone loss. The greater potential of guided bone regeneration was associated with the graft material due to the higher grade of vital bone and the lower percentage of residual graft particles. All studied bone substitute materials resulted in efficient bone formation for dental implants and alveolar ridge preservation procedures.

Metrics

Metrics Loading ...

References

  1. Zhuang G, Mao J, Yang G, Wang H. Influence of different incision designs on bone increment of guided bone regeneration (Bio-Gide collagen membrane +Bio-OSS bone powder) during the same period of maxillary anterior tooth implantation. Bioengineered. 2021 Dec;12(1):2155-2163. doi: 10.1080/21655979.2021.1932209.
  2. Abdel-Kader MA, Abdelazeem AF, Ahmed NEB, Khalil YM, Mostafa MI. Oral rehabilitation of a case with regional odontodysplasia using a regenerative approach-A case report and a review of literature. Spec Care Dentist. 2019, May;39(3):330-339. doi: 10.1111/scd.12378.
  3. Arab H, Shiezadeh F, Moeintaghavi A, Anbiaei N, Mohamadi S. Comparison of Two Regenerative Surgical Treatments for Peri-Implantitis Defect using Natix Alone or in Combination with Bio-Oss and Collagen Membrane. J Long Term Eff Med Implants. 2016;26(3):199-204. doi: 10.1615/JLongTermEffMedImplants.2016016396.
  4. Chiapasco M., Casentini P., Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants. 2009;24 Suppl: 237-59
  5. Choukroun J, Diss A., Simonpieri A, Girard M.O. Schhoffler C., Dohan S.L., et al. Platelet-rich-fibrin (PRF): a second generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod 2006: 101 (3): e 56 – 60.
  6. Diana C, Mohanty S, Chaudhary Z, Kumari S, Dabas J, Bodh R. Does platelet-rich fibrin have a role in osseointegration of immediate implants? A randomized, single-blind, controlled clinical trial. Int J Oral Maxillofac Surg. 2018 Sep;47(9):1178-1188. doi: 10.1016/j.ijom.2018.01.001. Epub 2018 May 7.
  7. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, et al. Platelet-richfibrin (PRF); A second generation concentrate. Part I: Tecnological concepts and evolution. Oral Sugery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology. 2006; 101 (3): e 37- e 44.
  8. Nícoli LG, Pigossi SC, Araújo RFdSB, Marcantonio C, Marcantonio E, Marcantonio JRE. Multidisciplinary approach to oral rehabilitation with dental implants after gunshot injury. A clinical report. The Journal of Prothestic Dentistry. 2018; 119 (3): 329 – 33.
  9. Jeong SM, Lee CU, Son JS, Oh JH, Fang Y, Choi BH. Simultaneous sinus lift and implantation using platelet-rich-fibrin as sole grafting material. J. Craniomaxillofac Surgery. 2014; 42 (6): 990 – 4.
  10. Tajima N, Ohba S, Sawase T, Asahima I. Evaluation of sinus floor augmentation with simultaneous implant placement using platelet-rich-fibrin as sole grafting material. Int J Oral Maxillofac Implants 2013;28(1):77- 83.
  11. Xuan F, Lee CU, Son JS, Jeong SM, Choi BH. A comparative study of the regenerative effect of sinus bone grafting with platelet-rich fibrin-mixed Bio-Oss® and commercial fibrin-mixed Bio-Oss®: an experimental study. J Craniomaxillofac Surg. 2014 Jun;42(4):e47-50 [doi: 10.1016/j.jcms.2013.05.029. Epub 2013 Aug 2].
  12. Moreira AC, Silva JR, Samico RP, Nishioka GNM, Nishioka RS. Application of BioOss in tissue regenerative treatment prior to implant installation: literature review. Braz Dent Sci. 2019, 22(2).
  13. Li P, Zhu H, Huang D. Autogenous DDM versus Bio-Oss granules in GBR for immediate implantation in periodontal postextraction sites: A prospective clinical study. Clin Implant Dent Relat Res. 2018 Dec;20(6):923-928. doi: 10.1111/cid.12667. Epub 2018 Sep 19.
  14. Zampara E, Alshammari M, De Bortoli J, Mullings O, Gkisakis IG, Benalcázar Jalkh EB, Tovar N, Coelho PG, Witek L. A Histologic and Histomorphometric Evaluation of an Allograft, Xenograft, and Alloplast Graft for Alveolar Ridge Preservation in Humans: A Randomized Controlled Clinical Trial. J Oral Implantol. 2022 Dec 1;48(6):541-549. doi: 10.1563/aaid-joi-D-21-00012.
  15. Galindo-Moreno P, Abril-García D, Carrillo-Galvez AB, Zurita F, Martín-Morales N, O'Valle F, Padial-Molina M. Maxillary sinus floor augmentation comparing bovine versus porcine bone xenografts mixed with autogenous bone graft. A split-mouth randomized controlled trial. Clin Oral Implants Res. 2022 May;33(5):524-536. doi: 10.1111/clr.13912.
  16. Meschi N, EzEldeen M, Garcia AET, Lahoud P, Van Gorp G, Coucke W, Jacobs R, Vandamme K, Teughels W, Lambrechts P. Regenerative Endodontic Procedure of Immature Permanent Teeth with Leukocyte and Platelet-rich Fibrin: A Multicenter Controlled Clinical Trial. J Endod. 2021 Nov;47(11):1729-1750. doi: 10.1016/j.joen.2021.08.003.
  17. Simonpieri A, et al. (2012). Current Knowledge and Perspectives for the Use of PlateletRich Plasma (PRP) and Platelet-Rich Fibrin (PRF) in Oral and Maxillofacial Surgery Part 2: Bone Graft, Implant and Reconstructive Surgery Current Pharmaceutical Biotechnology, 2012, 13, pp. 1231-1256.
  18. Langer R, Vacanti JP. Tissue Engineering. Science 1993; 260: 920-926.
  19. Nardi NB, Meirelles SL. Mesenchymal stem cells: isolation, in vitro expansion and characterization. HEP 2006; 174: 249-82.
  20. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery.ANZ J Surg, 2009, 79:235-244.
  21. Calasans MD, Fernandes GVO, Granjeiro JM. Preservação alveolar com enxertos após exodontias e previamente à instalação de implantes. RevistaImplantnews, 2011, 6: 583- 590.
  22. Aubin JE, Liu F. The osteoblast lineage. In: Bilizekian, J., Raisz, L., and Rodan, G., editors. Principles of Bone Biology. San Diego, CA: Academic Press: 1996, 39-50.
  23. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R: Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral MaxillofacSurg 2009, 38 :201-209.
  24. Fardin AC, et al. Enxerto Ósseo em Odontologia: Revisão de Literatura. Innov Implant J, BiomaterEsthet, São Paulo, 2010, 5 (3): 48-52.
  25. Zotarelli Filho IJ, Frascino LF, Greco OT, Araujo JDD, Bilaqui A, Kassis EN, Ardito RV andBonilla-Rodriguez GO. Chitosan-collagen scaffolds can regulate the biologicalactivities of adipose mesenchymal stem cells for tissueengineering. J Regen Med Tissue Eng. 2013; 2:12. http://dx.doi.org/10.7243/2050-1218-2-12.
  26. Zago MA, Covas DT. Células-tronco: Origens e Propriedades. In: Células-tronco: A nova Fronteira da medicina. Ed. M. Zago e D. T. Covas, 2006, pp. 3-20. Editora Atheneu São Paulo.
  27. Vacanti JP, Langer R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet,1999; 354: 32–34.
  28. Gimble JM, Katz AJ, Bunnell BA. Adipose-Derived Stem Cells for Regenerative Medicine. Circ Res; 2013, 100:1249-1260.
  29. Hallman M, Cederlund A, Lindskog S, Lundgren S, Sennerby L. A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Results after 6 to 8 months of healing. Clin Oral Implants Res 2001 Apr;12(2):135-143.
  30. Hing K. A. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos. Trans. R. Soc. Lond. B. Biol Sci., 2004, 362(1825) : 2821-2850.
  31. Mazzoneto R. Reconstruções em Implantodontia – Protocolos clínicos para o sucesso e aprevisibilidade. Ed. Napoleão, 2009, 1ªEdição. Nova Odessa – SP, Brasil.
  32. Maiorana C, Sommariva L, Brivio P, Sigurtà D, Santoro F. Maxillary sinus augmentation with anorganic bovine bone (Bio-Oss) and autologous platelet-rich plasma: preliminary clinical and histologic evaluations. Int J Periodontics Restorative Dent 2003 Jun;23 (3) : 227-235.
  33. Tejero R, Anitua E, Orive G. Toward the biomimetic implant surface: Biopolymers on titanium-based implants for bone regeneration. Journal of Progress in Polimeral Science, 2014, 39, pp. 1406-1447.
  34. Lima AF, Martorelli. Enxertos ósseos: características de alguns materiais. Revista ABO Nacional, 2008, 16(3).

How to Cite

Cardoso, A. C., Idalgo, F. A., Pereira, S. A. dos S., Nunes, A. G., Kassis, E. N., & Cicareli, A. J. (2023). Major aspects of mesenchymal stem cell signaling and differentiation into osteoblasts in the optimization of bone formation for dental implant: a systematic review. MedNEXT Journal of Medical and Health Sciences, 4(2). https://doi.org/10.54448/mdnt23207