Skip to main content Skip to main navigation menu Skip to site footer
Review
Published: 25-03-2023

3D bioprinting strategies and their application in studies in vivo and in vitro animal models for skin regeneration: a concise systematic review and meta-analysis

FACERES – Faculty of Medicine of Sao Jose do Rio Preto, Sao Paulo, Brazil
FACERES – Faculty of Medicine of Sao Jose do Rio Preto, Sao Paulo, Brazil / ABRAN - Associação Brasileira de Nutrologia/Brazilian Association of Nutrology, Catanduva, Sao Paulo, Brazil
Skin Tissue regeneration Animal models 3D Bioprinting

Abstract

Introduction: Annually, 50% of medical expenses worldwide stem from damage to the body's tissues and organs. Large skin defects can be caused by tumor excision, venous ulcers, diabetic foot ulcers, and burns. The 3D bioprinting of skin has an advantage compared to other technologies for skin substitutes, the capacity for directional and spatial handling at the cellular level with variable density. Objective: It was to identify the most efficient 3D bioprinting strategies and their application in studies in vivo and in vitro animal models, to demonstrate state of art in skin regeneration, and to direct new clinical research with translational studies. Methods: The rules of the Systematic Review-PRISMA Platform were followed. The research was carried out from November 2022 to February 2023 and developed based on Scopus, PubMed, Science Direct, Scielo, and Google Scholar. The quality of the studies was based on the GRADE instrument and the risk of bias was analyzed according to the Cochrane instrument. Results: A total of 237 articles were found and 97 articles were evaluated in full, and 16 were included and described in the present study. According to the GRADE instrument, most studies (X2 =90.5%>50%) followed a controlled clinical study model and had a good methodological design. the biases did not compromise the scientific basis of the studies. Conclusion: Most organotypic skin models have an epidermal layer of keratinocytes and a dermal layer of fibroblasts embedded in an extracellular matrix-based biomaterial. Furthermore, skin comprising epidermis, dermis, and hypodermis stratified with blood vessels, nerves, muscles, and cutaneous appendages can be fabricated. These findings provided evidence for further advances in translational studies in humans.

Metrics

Metrics Loading ...

References

  1. Roediger B, Schlapbach C. T cells in the skin: Lymphoma and inflammatory skin disease. J Allergy Clin Immunol. 2022 Apr;149(4):1172-1184. doi: 10.1016/j.jaci.2022.02.015.
  2. Hu W, Shang R, Yang J, Chen C, Liu Z, Liang G, He W, Luo G. Skin γδ T Cells and Their Function in Wound Healing. Front Immunol. 2022 Apr 11;13:875076. doi: 10.3389/fimmu.2022.875076.
  3. Bay L, Ring HC. Human skin microbiota in health and disease: The cutaneous communities' interplay in equilibrium and dysbiosis: The cutaneous communities' interplay in equilibrium and dysbiosis. APMIS. 2022 Dec;130(12):706-718. doi: 10.1111/apm.13201.
  4. Băicoianu-Nițescu LC, Gheorghe AM, Carsote M, Dumitrascu MC, Sandru F. Approach of Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome-Related Skin Tumors. Diagnostics (Basel). 2022 Nov 12;12(11):2768. doi: 10.3390/diagnostics12112768.
  5. Song MSH, Baldwin AJ, Wormald JCR, Coleman C, Chan JKK. Outcomes of Free Flap Reconstruction for Chronic Venous Ulceration in the Lower Limb: A Systematic Review. Ann Plast Surg. 2022 Sep 1;89(3):331-335. doi: 10.1097/SAP.0000000000003249. Epub 2022 Jun 11. PMID: 35703233.
  6. Ziegler D, Tesfaye S, Spallone V, Gurieva I, Al Kaabi J, Mankovsky B, Martinka E, Radulian G, Nguyen KT, Stirban AO, Tankova T, Varkonyi T, Freeman R, Kempler P, Boulton AJ. Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diabetes Res Clin Pract. 2022 Apr;186:109063. doi: 10.1016/j.diabres.2021.109063. Epub 2021 Sep 20. PMID: 34547367.
  7. Dayya D, O'Neill OJ, Huedo-Medina TB, Habib N, Moore J, Iyer K. Debridement of Diabetic Foot Ulcers. Adv Wound Care (New Rochelle). 2022 Dec;11(12):666-686. doi: 10.1089/wound.2021.0016.
  8. Palackic A, Duggan RP, Campbell MS, Walters E, Branski LK, Ayadi AE, Wolf SE. The Role of Skin Substitutes in Acute Burn and Reconstructive Burn Surgery: An Updated Comprehensive Review. Semin Plast Surg. 2022 Apr 12;36(1):33-42. doi: 10.1055/s-0042-1743455.
  9. Hebron C, Mehta K, Stewart B, Price P, Potokar T. Implementation of the World Health Organization Global Burn Registry: Lessons Learned. Ann Glob Health. 2022 May 18;88(1):34. doi: 10.5334/aogh.3669.
  10. Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 2022 Aug 4;29(8):1161-1180. doi: 10.1016/j.stem.2022.07.006.
  11. Panja N, Maji S, Choudhuri S, Ali KA, Hossain CM. 3D Bioprinting of Human Hollow Organs. AAPS PharmSciTech. 2022 May 10;23(5):139. doi: 10.1208/s12249-022- 02279-9.
  12. Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication. 2022 May 31;14(3). doi: 10.1088/1758-5090/ac6d11.
  13. Pasierb A, Jezierska M, Karpuk A, Czuwara J, Rudnicka L. 3D skin bioprinting: future potential for skin regeneration. Postepy Dermatol Alergol. 2022 Oct;39(5):845-851. doi: 10.5114/ada.2021.109692.
  14. Montesdeoca CYC, Stocco TD, Marciano FR, Webster TJ, Lobo AO. 3D Bioprinting of Smart Oxygen-Releasing Cartilage Scaffolds. J Funct Biomater. 2022 Nov 17;13(4):252. doi: 10.3390/jfb13040252.
  15. Gupta S, Bit A. 3D bioprinting in tissue engineering and regenerative medicine. Cell Tissue Bank. 2022 Jun;23(2):199-212. doi: 10.1007/s10561-021-09936-6.
  16. Kang MS, Jang J, Jo HJ, Kim WH, Kim B, Chun HJ, Lim D, Han DW. Advances and Innovations of 3D Bioprinting Skin. Biomolecules. 2022 Dec 27;13(1):55. doi: 10.3390/biom13010055.
  17. Zhang M, Zhang C, Li Z, Fu X, Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater. 2022 Dec 19;10:rbac105. doi: 10.1093/rb/rbac105.
  18. Li M, Sun L, Liu Z, Shen Z, Cao Y, Han L, Sang S, Wang J. 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes. Biomater Sci. 2023 Feb 10. doi: 10.1039/d2bm02092k.
  19. Aliberti F, Paolin E, Benedetti L, Cusella G, Ceccarelli G. 3D bioprinting and Rigenera® micrografting technology: A possible countermeasure for wound healing in spaceflight. Front Bioeng Biotechnol. 2022 Aug 30;10:937709. doi: 10.3389/fbioe.2022.937709.
  20. Phang SJ, Basak S, Teh HX, Packirisamy G, Fauzi MB, Kuppusamy UR, Neo YP, Looi ML. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomater Sci Eng. 2022 Aug 8;8(8):3220-3241. doi: 10.1021/acsbiomaterials.2c00342.
  21. Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, Zhang J, Sheng Z, Xie C, Peng Z, Zhuang X, Bunpetch V, Zou Y, Huang W, Zhang Q, Alakpa EV, Zhang S, Ouyang H. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials. 2020 Nov;258:120287. doi: 10.1016/j.biomaterials.2020.120287.
  22. Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016 Dec 5;9(1):015006. doi: 10.1088/1758-5090/9/1/015006.
  23. Albanna M, Binder KW, Murphy SV, Kim J, Qasem SA, Zhao W, Tan J, El-Amin IB, Dice DD, Marco J, Green J, Xu T, Skardal A, Holmes JH, Jackson JD, Atala A, Yoo JJ. In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Sci Rep. 2019 Feb 12;9(1):1856. doi: 10.1038/s41598-018-38366-w.
  24. Roshangar L, Rad JS, Kheirjou R, Khosroshahi AF. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. J Tissue Eng Regen Med. 2021 Jun;15(6):546-555. doi: 10.1002/term.3194.
  25. Jin S, Oh YN, Son YR, Kwon B, Park JH, Gang MJ, Kim BW, Kwon HJ. ThreeDimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse SkinDerived Epidermal and Dermal Cells. J Microbiol Biotechnol. 2022 Feb 28;32(2):238- 247. doi: 10.4014/jmb.2111.11042.
  26. Ma J, Qin C, Wu J, Zhang H, Zhuang H, Zhang M, Zhang Z, Ma L, Wang X, Ma B, Chang J, Wu C. 3D Printing of Strontium Silicate Microcylinder-Containing Multicellular Biomaterial Inks for Vascularized Skin Regeneration. Adv Healthc Mater. 2021 Aug;10(16):e2100523. doi: 10.1002/adhm.202100523.
  27. Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, Kim MB, Lee H, Kim JH, Cho DW. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials. 2018 Jun;168:38-53. doi: 10.1016/j.biomaterials.2018.03.040.
  28. Chang B, Cornett A, Nourmohammadi Z, Law J, Weld B, Crotts SJ, Hollister SJ, Lombaert IMA, Zopf DA. Hybrid Three-Dimensional-Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications. Laryngoscope. 2021 May;131(5):1008-1015. doi: 10.1002/lary.29114.
  29. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741. doi: 10.1371/journal.pone.0057741.
  30. Huang S, Yao B, Xie J, Fu X. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater. 2016 Mar 1;32:170-177. doi: 10.1016/j.actbio.2015.12.039.
  31. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012 Jul;109(7):1855-63. doi: 10.1002/bit.24455.
  32. Afghah F, Ullah M, Seyyed Monfared Zanjani J, Akkus Sut P, Sen O, Emanet M, Saner Okan B, Culha M, Menceloglu Y, Yildiz M, Koc B. 3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineering. Biomed Mater. 2020 Apr 15;15(3):035015. doi: 10.1088/1748- 605X/ab7417.
  33. Liu X, Michael S, Bharti K, Ferrer M, Song MJ. A biofabricated vascularized skin model of atopic dermatitis for preclinical studies. Biofabrication. 2020 Apr 9;12(3):035002. doi: 10.1088/1758-5090/ab76a1.
  34. Tayebi L, Rasoulianboroujeni M, Moharamzadeh K, Almela TKD, Cui Z, Ye H. 3Dprinted membrane for guided tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2018 Mar 1;84:148-158. doi: 10.1016/j.msec.2017.11.027.
  35. Pourchet LJ, Thepot A, Albouy M, Courtial EJ, Boher A, Blum LJ, Marquette CA. Human Skin 3D Bioprinting Using Scaffold-Free Approach. Adv Healthc Mater. 2017 Feb;6(4). doi: 10.1002/adhm.201601101.
  36. Lee SJ, Lee JH, Park J, Kim WD, Park SA. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering. Materials (Basel). 2020 Aug 10;13(16):3522. doi: 10.3390/ma13163522.

How to Cite

Mauro, R. S., & Zotarelli-Filho, I. J. (2023). 3D bioprinting strategies and their application in studies in vivo and in vitro animal models for skin regeneration: a concise systematic review and meta-analysis. MedNEXT Journal of Medical and Health Sciences, 4(2). https://doi.org/10.54448/mdnt23206