Skip to main content Skip to main navigation menu Skip to site footer
Review
Published: 28-10-2022

Major approaches to bone regeneration process with gut microbiota, exosomes, and microRNAs: a systematic review

UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil
UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil
UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil / UNIPOS - Post graduate and continuing education, Dentistry department, São José do Rio Preto, São Paulo, Brazil
Bone diseases Bone regeneration Gut microbiota Exosomes MicroRNAs

Abstract

Introduction: The incidence and mortality of bone diseases are still steadily increasing, creating a significant financial burden for societies across the world. To prevent the occurrence of bone diseases, slow their progression, or reverse the injuries they cause, new alternatives or complementary treatments need to be developed. The gut microbiota plays a role in bone metabolism and the pathogenesis of osteoporosis. Objective: It was to analyze through a systematic review the main considerations and clinical findings of the bone formation process through the modulation of the gut microbiota, as well as the functions of microRNAs and exosomes. Methods: The systematic review rules (PRISMA) were followed. The search was carried out from August to September 2022 in the Scopus, PubMed, Science Direct, Scielo, and Google Scholar databases, using scientific articles from 2001 to 2022. The quality of the studies was based on the GRADE instrument and the risk of bias was analyzed according to the Cochrane instrument. Results and Conclusion: A total of 126 articles were found. A total of 34 articles were fully evaluated and 26 were included in this systematic review. Most studies showed homogeneity in their results, with I2 =98.8%>50%. The symmetrical funnel plot does not suggest a risk of bias between small sample-size studies. The gut microbiota plays an important role in the modulation of bone healing and bone health through the traffic of inflammatory TNF+ T and Th17 cells to the bone marrow, influencing the inflammatory state of the patient, determining the “brain-gut-bone” axis. It has been shown that the diversity of the gut microbiota is decreased in patients with osteoporosis, leading to a state of dysbiosis. There is a relationship between the microbiome, osteoblasts, osteoclasts, and nuclear factor ligand receptor-kappa-B (RANKL) activator. Studies have proposed several mechanisms of gut microbiome interaction with osteoclastogenesis and bone health, including microRNA, insulin-like growth factor 1, and immune system mediation. Therefore, bone regeneration requires that the basic biological principles of osteogenesis, osteoinduction, osteoconduction, and biocompatibility are followed.

Metrics

Metrics Loading ...

References

  1. Maria S, Witt-Enderby PA. Melatonin effects on bone: Potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J Pineal Res. 2014;56:115–125. doi: 10.1111/jpi.12116.
  2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638.
  3. Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123.
  4. Bors W, Michel C. Chemistry of the antioxidant effect of polyphenols. Ann. N. Y. Acad. Sci. 2002, 957, 57–69.
  5. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904.
  6. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215.
  7. Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ, Bushman FD, De Vos WM, Ehrlich SD, Fraser CM, Hattori M et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 2018, 3, 8–16.
  8. Sorrenti V, Fortinguerra S, Caudullo G, Buriani A. Deciphering the Role of
  9. Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients. 2020 Apr 29;12(5):1265. doi: 10.3390/nu12051265. PMID: 32365576; PMCID: PMC7281972.
  10. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Procko DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, v. 8, n. 4, p. 315-317.
  11. Zuk PA, Zhu M, Ashjian P. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell; 13: 4279–4295, 2002.
  12. Caplan AI, Buder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med; 7: 259-64, 2001.
  13. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al., Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles, J. Immunol. 2011, 166 :7309–7318.
  14. Baharlooi H, Nouraei Z, Azimi M, Moghadasi AN, Tavassolifar MJ, Moradi B, Sahraian MA, Izad M. Umbilical cord mesenchymal stem cells as well as their released exosomes suppress proliferation of activated PBMCs in multiple sclerosis. Scand J Immunol. 2020 Dec 18:e13013. doi: 10.1111/sji.13013. Epub ahead of print. PMID: 33338274.
  15. Mears R, Craven RA, Hanrahan S, Totty N, Upton C, Young SL, et al., Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, Proteomics 4 (2004) 4019–4031, https://doi.org/10.1002/pmic.200400876.
  16. R. Gastpar, M. Gehrmann, M.A. Bausero, A. Asea, C. Gross, J.A. Schroeder, et al., Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells, Cancer Res. 65 (2005) 5238–5247, https://doi.org/10.1158/0008-5472.can-04-3804.
  17. W. Xu, Z. Yang, N. Lu, From pathogenesis to clinical application: insights into exosomes as transfer vectors in cancer, J. Exp. Clin. Cancer Res. 35 (2016) 156,https://doi.org/10.1186/s13046-016-0429-5.
  18. H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol. 9 (2007) 654–659, https://doi.org/10.1038/ncb1596.
  19. B. Zhang, L. Shen, H. Shi, Z. Pan, L. Wu, Y. Yan, et al., Exosomes from Human Umbilical Cord Mesenchymal Stem Cells: Identification, Purification, and Biological Characteristics, 2016, p. 1929536, https://doi.org/10.1155/2016/1929536.
  20. Zhuang G, Mao J, Yang G, Wang H. Influence of different incision designs on bone increment of guided bone regeneration (Bio-Gide collagen membrane +BioOSS bone powder) during the same period of maxillary anterior tooth implantation. Bioengineered. 2021 Dec;12(1):2155-2163. doi: 10.1080/21655979.2021.1932209. PMID: 34057023.
  21. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R: Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 2009, 38 : 201-209.
  22. Zotarelli Filho IJ, Frascino LF, Greco OT, Araujo JDD, Bilaqui A, Kassis EN, Ardito RV and Bonilla-Rodriguez GO. Chitosan-collagen scaffolds can regulate the biological activities of adipose mesenchymal stem cells for tissue engineering. J Regen Med Tissue Eng. 2013; 2:12. http://dx.doi.org/10.7243/2050-1218-2-12.
  23. Egido-Moreno S, Valls-Roca-Umbert J, Céspedes-Sánchez JM, López-López J, Velasco-Ortega E. Clinical Efficacy of Mesenchymal Stem Cells in Bone Regeneration in Oral Implantology. Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2021 Jan 21;18(3):894. doi: 10.3390/ijerph18030894.
  24. Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The Modulatory Effect and Implication of Gut Microbiota on Osteoporosis: From the Perspective of “Brain– Gut–Bone” Axis. Food Funct. 2021, 12, 5703–5718.
  25. Yu M, Pal S, Paterson CW, Li JY, Tyagi AM, Adams J, Coopersmith CM, Weitzmann MN, Pacifici, R. Ovariectomy Induces Bone Loss via MicrobialDependent Trafficking of Intestinal TNF+ T Cells and Th17 Cells. J. Clin. Investig. 2021, 131, e143137.
  26. Zaiss MM, Jones RM, Schett G, Pacifici R. The Gut-Bone Axis: How Bacterial Metabolites Bridge the Distance. J. Clin. Investig. 2019, 129, 3018–3028.
  27. Sheen JR, Garla VV. Fracture Healing Overview; StatPearls Publishing: Treasure Island, FL, USA, 2020.
  28. Kenkre J, Bassett J. The Bone Remodelling Cycle. Ann. Clin. Biochem. Int. J. Lab. Med. 2018, 55, 308–327.
  29. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast–Osteoclast Interactions. Connect. Tissue Res. 2018, 59, 99–107.
  30. Xu Z, Xie Z, Sun J, Huang S, Chen Y, Li C, Sun X, Xia B, Tian L, Guo C; et al. Gut Microbiome Reveals Specific Dysbiosis in Primary Osteoporosis. Front. Cell. Infect. Microbiol. 2020, 10, 160.
  31. Li JY, Yu M, Pal S, Tyagi AM, Dar H, Adams J, Weitzmann MN, Jones RM, Pacifici R. Parathyroid Hormone– Dependent Bone Formation Requires Butyrate Production by Gut microbiota. J. Clin. Investig. 2020, 130, 1767–1781.
  32. Castaneda, M.; Smith, K.M.; Nixon, J.C.; Hernandez, C.J.; Rowan, S. Alterations to the Gut Microbiome Impair Bone Tissue Strength in Aged Mice. Bone Rep. 2021, 14, 101065.
  33. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C. The Gut Microbiota Regulates Bone Mass in Mice. J. Bone Miner. Res. 2012, 27, 1357–1367.
  34. Gargiulo Isacco C, Ballini A, Paduanelli G, Inchingolo AD, Nguyen KCD, Inchingolo AM, Pham VH, Aityan SK, Schiffman M, Tran TC, Huynh TD, Filgueira L, Scarano A, Del Fabbro M, Mortellaro C, Dipalma G, Inchingolo F. Bone decay and beyond: how can we approach it better. J Biol Regul Homeost Agents. 2019 Nov-Dec;33(6 Suppl. 2):143-154.
  35. Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D'Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci. 2022 Apr 5;23(7):4027. doi: 10.3390/ijms23074027.

How to Cite

Sarraceni, N. S., Miyazaki, V. F., & Kassis, E. N. (2022). Major approaches to bone regeneration process with gut microbiota, exosomes, and microRNAs: a systematic review. MedNEXT Journal of Medical and Health Sciences, 3(S6). https://doi.org/10.54448/mdnt22S605