Skip to main content Skip to main navigation menu Skip to site footer
Review
Published: 29-08-2022

Arboviroses notification in Brazil in the COVID 19 pandemic

FACERES - Faculty of Medicine of São José do Rio Preto, Sao Paulo, Brazil
FACERES - Faculty of Medicine of São José do Rio Preto, Sao Paulo, Brazil
FACERES - Faculty of Medicine of São José do Rio Preto, Sao Paulo, Brazil
FACERES - Faculty of Medicine of São José do Rio Preto, Sao Paulo, Brazil
FACERES - Faculty of Medicine of São José do Rio Preto, Sao Paulo, Brazil
FACERES - Faculty of Medicine of São José do Rio Preto, Sao Paulo, Brazil
Arboviruses COVID-19 Epidemiologic studies

Abstract

Introduction: During tha Sars-Cov-2 pandemic the focus was the COVID-19, but what about other disease? In this way, our study shows what happen to the arbovirus’s notifications. Objective: Analyze the record of notifications of arboviruses during the Sars-Cov-2 pandemic in 2020 in Brazil and compared with notifications occurred in between 2015 to 2020. Methods: Through a descriptive and epidemiological study, the data was collected in DATASUS BRASIL, INMET and CPTEC databases. Results: The drop in the notification of arbovirus cases in 2020 was proven, linked to the predominance of compulsory notifications of Dengue in the first half of 2020; this data confirms the seasonality of the occurrence of dengue. Similarly, Zika virus cases had a higher percentage of notifications in the first half of the year, contrasting with previous data. In addition to the persistence of the highest incidence of cases in the early months of 2020, Chikungunya notifications showed a constant percentage incident from 2017 to 2019, data on rainfall from 2015 to 2019 indicated low levels in the month of January compared to previous years, while in the month of 2020 a considerable increase of precipitation anomalies. Conclusion: Compared to previous years, the data show a considerable drop in arbovirus reports during the period of the Sars-Cov-2 pandemic in 2020. To establish more clearly the correlation between low arbovirus reporting and the COVID pandemic -19 it is necessary to carry out further studies.

Metrics

Metrics Loading ...

References

  1. Tauil PL. Urbanization and dengue ecology. Cad Saúde Pública. 2001; 17: 99-102.
  2. Petersen LR, Jamieson DJ, Powers AM, Honein MA. Zika Virus. N Engl J Med. 2016; 374: 1552-63.
  3. Ferreira AC, Chiaravalloti Neto F, Mondini A. Dengue em Araraquara, SP: epidemiologia, clima e infestação por Aedes aegypti. Rev Saude Publica. 2018; 52(26): 18-28.
  4. Campos SS. Estudo da transmissão vertical e transmissão venérea do vírus Zika em mosquitos Aedes Aegypti[tese]. Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, 2017.
  5. Carvalho FML, Moura RS, Oliveira GGS, Silva CGR, Góis LL. Produção da proteína recombinante do envelope do vírus Zika no sistema Bacilovírus-célula inseto. Coletânea Melhores de Artigos de TCC. Universidade Católica de Salvador. 2018: 38-55.
  6. Lopes N, Nozawa C, Linhares REC. Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Rev Pan-Amaz Saúde. 2014; 5(3): 55-64.
  7. Wang T, Wang M, Shu B, Chen X, Luo L, Wang J, et al. Evaluation of inapparent dengue infections in southern china. PLOS Neglected Tropical Diseases. 2015; 9(3): 1-11.
  8. Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussineq M, et al. The global burden of disease study 2010: interpretation and implications for the neglected tropical disease. PLOS Neglected Tropical Diseases. 2014; 8(7): 1-9.
  9. Leao JC, Marques CDL, Duarte ALBP, Almeida OP, Porter S, Gueiros LA. Cjikungunya fever: general and oral healthcare implications. Oral Diseases. 2018; 24: 233-237.
  10. Flor CJRV, Guerreiro CF, Anjos JLM. Desenvolvimento neuropsicomotor em crianças com microcefalia associado ao Zika Virus. Revista Pesquisa em Fisioterapia. 2017; 7(3): 313-8.
  11. Hayes EB. Zika vírus outside africa. Emerg Infect Dis. 2009; 15(9): 1347-50.
  12. Landry ML, George KS. Laboratory diagnosis of Zika Virus infection. Arch Pathol Lab Med. 2017; 141(1): 60-7.
  13. Dubrulle M, Mousson L, Moutailer S, Vazeille, Failoux AB. Chukingunya virus and Aedes Mosquitoes: saliva is infectious as soon as two days after oral infection. PLOS ONE. 2009; 4(6): 1-6.
  14. Silva MMO, Tauro LB, Kikuti M, Anjos RO, Santos VC, Gonçalves TSF, et al. Concomitant transmission of dengue, chikungunya, and zika viroses in Brazil: clinical and epidemiological findings from surveillance for acute febrile illness. Clin Infect Dis. 2019; 69(8): 1353-9.
  15. Goyal M, Chauhan A, Goyal V, Jaiswal N, Singh S, Singh M. Recent development in the strategies projected for chikungunya vaccine in humans. Drug Des Devel Ther. 2018; 12: 4195-4206.
  16. Taubitz W, Cramer JP, Kapaun A, Pfeffer M, Drosten C, Dobler G, et al. Chikungunya fever in travelers: clinical presentation and course. Clinical Infectious Diseases. 45(1): 1-4.
  17. Donalisio MR, Freitas ARR. Chikungunya no Brasil: um desafio emergente. Rev bras epidemiol. 2015; 18(1): 283-5.
  18. Ministério da Saúde. Sistema de Informação de Agravos de Notificação – SINAN. Disponível em: http://portalsinan.saude.gov.br/o-sinan. Acesso em: 17 out 2021.
  19. Ministério da Agricultura, Pecuária e Abastecimento [a]. Precicipatação Total Prevista. Instituo Nacional de Metereologia. Disponível em: https://clima.inmet.gov.br/progp/0. Acesso em: 17 out 2021.
  20. Ministério da Agricultura, Pecuária e Abastecimento [b]. Precicipatação Observada. Instituo Nacional de Metereologia. Disponível em: http://clima1.cptec.inpe.br/monitoramentobrasil/pt. Acesso em: 17 out 2021.
  21. National Library of Medicine. COVID-19. Pubmed. Disponível em: https://pubmed.ncbi.nlm.nih.gov/?term=COVID+19. Acesso em: 17 out 2021.
  22. Maciel IJ, Siqueira Júnior JB, Martelli CMT. Epidemiologia e desafios no controle do dengue. Revista de patologia tropical. 2008; 37(2): 111-130.
  23. Wang SF, Chang K, Lu RW, Wang WH, Chen YH, Chen M, et al. Large Dengue virus type 1 outbreak in Taiwan. Emerging microbes and infections. 2015; 4: 1-3.
  24. Lien PTK, Duoc VT, Gabotte L, Cornillot E, Nga PT, Briant L, Frutos R, et al. Role of Aedes aegypti and Aedes albopictus during the 2011 dengue fever epidemics in Hanoi, Vietnam. Asian Pac J Trop Med. 2015; 8(7): 543-8.
  25. Barde PV, Mishra N, Singh N. Timely diagnosis, use of information technology and mosquito control prevents dengue outbreaks: experience from central India. Journal of Infection and Public Health. 2018; 11(5): 739-41.
  26. Kunwar R, Prakash R. Dengue outbreak in a large military station: have we learnt any lesson?. Medical Journal, Armed Forces India. 2014; 71(1): 11-14.
  27. Bueno DCS. Estudo ecológico da dengue no município de Bauro-SP [tese]. Universidade Estadual Paulista “Júlio de Mesquita Filho”, Faculdade de Medicina de Botucatu. 2019. Disponível em: https://repositorio.unesp.br/bitstream/handle/11449/181784/bueno_dcs_me_bot_int.pdf?sequence=4&isAllowed=y. Acesso em: 17 out 2021.
  28. Pereira LEC, Ferraudo AS. Cenários ambientais e percepção da população quanto ao vetor Aedes aegypti [tese]. Universidade Estadual Paulista - Faculdade de Ciências Agrárias e Veterinária. 2018. Disponível em: https://repositorio.unesp.br/bitstream/handle/11449/154330/pereira_lec_me_jabo_par_sub.pdf?sequence=11&isAllowed=y. Acesso em: 17 out 2021.
  29. República Federativa do Brasil, Ministério do Meio Ambiente, Agência Nacional de Água. Conjuntura de Recursos Hídricos no Brasil. Agência Nacional de Águas. Brasília: 2018.
  30. Ndenga BA, Mutuku FM, Ngugi HN, Mbakaya JO, Aswani P, Musunzaji PS. Characteristics of Aedes aegypti adult mosquitões in rural and urban áreas of western and coastal Kenya. PLOS ONE. 2017; 12(12): 1-14.
  31. Yalwala S, Clark J, Oullo D, Ngonga D, Abuom D, Wanja E, et al. Comparative efficacy of existing sur- veillance tools for Aedes aegypti in Western Kenya. J Vect Ecol 2015; 40(2):301–7.
  32. LaBeaud A, Banda T, Brichard J, Muchiri E, Mungai P, Mutuku F, et al. High rates of O’Nyong nyong and chikungunya virus transmission in coastal Kenya. PLOS Negl Trop Dis. 2015; 9(2): 1-13.
  33. Chadee D, Martinez R. Landing periodicity of Aedes aegypti with implications for dengue transmission in Trinidad, West Indies. J Vect Ecol. 2000; 25(2):158–63.
  34. Saifur R, Dieng H, Hassan A, Salmah M, Satho T, Miake F, et al. Changing domesticity of Aedes aegypti in northern peninsular Malaysia: Reproductive consequences and potential epidemiological implications. PLoS ONE. 2012; 7(2): 1-10.
  35. Wan-Norafikah O, Nazni W, Noramiza S, Shafa’ar-Ko’ohar S, Heah S, Nor-Azlina A, et al. Distribution of Aedes mosquitoes in three selected localities in Malaysia. Sains Malaysiana. 2012; 41(10):1309– 13.
  36. Fávaro E, Dibo M, Mondini A, Ferreira A, Barbosa A, Eiras A, et al. Physiological state of Aedes (Stego-myia) aegypti mosquitoes captured with MosquiTRAPstm in Mirassol, São Paulo, Brazil. J Vect Ecol. 2006; 31(2):285–91.
  37. Eduvirgem RV, Ferreira MEMC, Periçato AJ, Santos DC. Dengue, Chikungunya and Zika vírus in the Southern Region of Brazil. Essentia Editora. 2018; 20(1): 67-80
  38. Costa GB, Smithyman R, O’Neill S, Moreira LA. How to engage communities on a large scale? Lessons from World Mosquito Program in Rio de Janeiro, Brazil. Gates Open Res. 2020; 4: 109
  39. Maniero VC, Santos MO, Ribeiro RL, Oliveira PAC, Silva TB, Moleri AB, et al. Dengue, chikungunya e zika vírus no Brasil: situação epidemiológica, aspectos clínicos e medidas preventivas. Almanaque Multidisciplinar de pesquisa. 2016; 1(1): 118-45.

How to Cite

Ferrari, N., Santos, M. G. de O., Moraes, L. P., Dadona, M. J. de O., Iembo, T., & Cursino, L. M. L. (2022). Arboviroses notification in Brazil in the COVID 19 pandemic. MedNEXT Journal of Medical and Health Sciences, 3(3). https://doi.org/10.54448/mdnt22314