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Abstract 

Introduction: Regular physical training associated with 

nutritional health has broad benefits for the health of the 

gut microbiota, acting positively on almost all organic 

systems in the body. In this sense, microRNAs (miRs) 

have emerged as critical regulators of numerous 

biological processes, modulating gene expression at the 

post-transcriptional level. Objective: It was to carry out 

a systematic review to elucidate the main considerations 

of nutrology, microRNAs, adult stem cells, and gut 

microbiota in the process of muscle regeneration in 

athletes. Methods: The systematic review rules of the 

PRISMA Platform were followed. The research was 

carried out from August to September 2024 in Scopus, 

PubMed, Science Direct, Scielo, and Google Scholar 

databases. The quality of the studies was based on the 

GRADE instrument and the risk of bias was analyzed 

according to the Cochrane instrument. Results and 

Conclusion: A total of 237 articles were found, and 107 

articles were evaluated in full, and 52 were included and 

developed in this systematic review study. Considering 

the Cochrane tool for risk of bias, the overall assessment 

resulted in 47 studies with a high risk of bias and 70 

studies that did not meet GRADE. miRs play an important 

role as regulatory molecules during the muscle healing 

process. Myoblasts are known to secrete exosomes 

enriched with miRs into the inflammatory environment, 

whereby miR-224 is transferred to macrophages to inhibit 

M2 polarization. Additional data demonstrate that WNT-

9a may be a direct target of miR-224 for macrophage 

polarization. The results showed that miR-122 and 

myogenic markers were down-regulated in C2C12 cells 

after TGF-β stimulation, and overexpression of miR-122 

can restore myogenesis inhibited by TGF-β. Evidence 

suggests that the exosome derived from mesenchymal 

stem cells exhibits functions similar to mesenchymal stem 

cells with low immunogenicity and without tumorization. 

High rates of intestinal self-renewal are enabled by 

intestinal stem cells (LGR5+) at the base of intestinal 

crypts. LGR5+ activity, including proliferation and 

differentiation rates, is affected by large shifts in nutrient 

availability, as occurs on a high-fat diet or fasting. The 

practice of physical activity, endogenous metabolites, and 

dietary nutrients can directly influence epigenetic 

enzymes. Dietary manipulations and metabolites can 

affect tissue stem cell fate decisions. Self-renewal and 

differentiation of mesenchymal stem cells can be 

regulated by manipulating vitamin C, A, or D levels and 

valine restriction. 

D
O

I:
 1

0
.5

4
4

4
8

/
m

d
n

t2
5

1
0

6
 

REVIEW ARTICLE 

mailto:ju.silva.med@gmail.com
https://doi.org/10.54448/mdnt25106
https://orcid.org/0009-0007-6883-5281
https://orcid.org/0009-0000-0359-5116
https://orcid.org/0009-0003-2045-857X
https://orcid.org/0009-0006-3960-2588
https://orcid.org/0009-0004-0904-0399
https://orcid.org/0009-0002-9626-3704
https://orcid.org/0009-0001-8323-5627
https://orcid.org/0009-0004-0894-1419
https://orcid.org/0009-0008-5050-8474
https://orcid.org/0009-0009-0156-4573


MedNEXT J Med. Health Sci, São Paulo, Vol 6, Iss 1, e25106, 2025 

 

MedNEXT J Med Health Sci (2025) Page 2 of 9 

 

 

 

Keywords: Regenerative processes. Nutrology. 

MicroRNAs. Muscle regeneration. 

 

Introduction  

In the context of sports nutrition, nutrition helps to 

recover from the negative impact of an exercise-induced 

injury. The outcomes of an exercise-induced injury can 

vary widely, depending on the nature and severity of the 

injury. Injuries typically result in cessation or at least 

reduction, of participation in sports and decreased 

physical activity. Following an injury, an inflammatory 

response is initiated, and, although excess inflammation 

can be detrimental, given the importance of the 

inflammatory process for wound healing, attempting to 

drastically reduce inflammation may not be ideal for 

optimal recovery [1,2].  

In this regard, muscle loss results in reductions in 

basal muscle protein synthesis and muscle resistance to 

anabolic stimulation. Energy balance is compromised. 

Higher protein intakes (2-2.5 g/kg/day) are therefore 

required. In this context, there is promising evidence for 

the use of omega-3 fatty acids and creatine to combat 

muscle loss and increase hypertrophy. The main 

nutritional recommendation for injured exercisers should 

be to consume a well-balanced diet based on minimally 

processed whole foods or ingredients made from whole 

foods [2,3].  

These investigations usually evaluate the 

performance limits or the health benefits induced by 

exercise [4]. Thus, recent progress has been made 

regarding gut microbiota, regenerative nutrition, and 

skeletal muscle metabolism [4-6]. In this context, regular 

physical training associated with nutritional health has 

broad benefits for the health of the gut microbiota, acting 

positively on almost all organ systems of the body [7-9].  

In this sense, microRNAs (miRs) have emerged as 

critical regulators of numerous biological processes, 

modulating gene expression at the post-transcriptional 

level. The discovery of miRNAs as novel and important 

regulators of gene expression has expanded the 

biological understanding of the regulatory mechanism in 

muscle [10]. MiRs are a unique subset of non-coding 

RNA, whose primary function is to modulate gene 

expression post-transcriptionally [11]. Most miRNAs are 

transcribed from nuclear DNA like other mRNAs: by the 

enzyme polymerase II. MiRs can be transcribed 

individually or in clusters and may have their promoter 

[12-14].   

In addition, adult stem cells (ASCs) stand out, such 

as intestinal stem cells at the base (crypts) of the intestine 

and muscle stem cells outside the sarcolemma next to the 

basement membrane of the muscle [15-17]. The tissue 

niche is also capable of influencing ASC metabolism. The 

metabolism of tissue stem cells has been focused on 

central carbon metabolism, i.e., the generation of 

metabolic building blocks via glycolysis, oxidative 

phosphorylation, or the pentose phosphate pathway. In 

this sense, ASCs mediate homeostasis and regeneration 

of tissues and organs, making decisions about whether to 

remain quiescent, proliferate, or differentiate into mature 

cell types. These decisions are directly integrated with the 

energy balance and nutritional status of the organism. 

Metabolic byproducts and substrates that regulate 

epigenetic and signaling pathways are considered to have 

an instructive rather than observer role in regulating cell 

fate decisions [17].  

In this context, increasing evidence suggests that 

metabolism during quiescence, activation, and 

differentiation may vary between tissues, integrating 

signaling cues and metabolic inputs from the niche and 

the organism as a whole, mainly through nutrient and gut 

microbiota signaling [18-25].  

Therefore, based on this context, the present study 

aimed to perform a systematic review to elucidate the 

main considerations of nutrology, microRNAs, adult stem 

cells, and gut microbiota in the process of muscle 

regeneration in athletes.  

  

 Methods  

Study Design  

This study followed the international systematic 

review model, following the PRISMA (preferred reporting 

items for systematic reviews and meta-analysis) rules 

[26].  

 

Data Sources and Search Strategy  

The search strategies for this systematic review 

were based on the keywords (DeCS /MeSH Terms): 

“Regenerative processes. Nutrology. MicroRNAs. Muscle 

regeneration”. The search was conducted from August to 

September 2024 in the Scopus, PubMed, Science Direct, 

Scielo, and Google Scholar databases. In addition, a 

combination of keywords with the Boolean terms “OR”, 

“AND” and the operator “NOT” were used to target the 

scientific articles of interest.   

  

Quality of Studies, Eligibility Criteria, and Risk of 

Bias  

Studies that rigorously presented the results of the 

search process that presented scientific quality according 

to the GRADE classification, and that did not present a 

significant risk of bias, that is, that could compromise the 

safety of the results, were selected. According to the 

GRADE recommendations [27], the quality of the 

scientific evidence in the studies addressed was classified 

as high, moderate, low, or very low, according to the risk 
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of bias of evidence, sample size, clarity of comparisons, 

precision, and consistency in the effects of the analyses. 

High quality of evidence was attributed through four 

criteria: 1) Randomized or prospective controlled clinical 

trials; 2) Retrospective clinical trials or case series; 3) 

Sample size greater than 15 participants; 4) Studies with 

well-designed statistical results; 5) Studies published in 

indexed journals and with a significant impact factor; 6) 

descriptive, interpretative, theoretical (credibility of 

methods) and pragmatic validity. The Cochrane 

Instrument [28] was adopted to assess the risk of bias in 

the selected studies using the Cohen Test to calculate the 

effect size versus the Inverse of the Standard Error 

(precision or sample size) to determine the Risk of Bias in 

the studies using the Funnel Plot graph.  

  

Results and discussion  

Summary of the Literature Findings  

A total of 237 articles were found. Initially, duplicate 

articles were excluded. After this process, the abstracts 

were evaluated and a new exclusion was performed, 

removing the articles that did not include the theme of 

this article, resulting in 154 articles. 107 articles were 

evaluated in full and 52 were included and developed in 

the present systematic review study (Figure 1). Of the 

total of 55 articles, 3 articles are related to the PRISMA, 

GRADE, and COCHRANE standards, and were not 

considered for scientific writing. Considering the 

Cochrane risk of bias tool, the overall assessment resulted 

in 47 studies with a high risk of bias and 70 studies that 

did not meet GRADE.  

  

Figure 1. Flowchart showing the article selection process.  

 
Source: Own authorship. 

Figure 2 presents the results of the risk of bias of 

the studies using the Funnel Plot, showing the 

calculation of the Effect Size (Magnitude of the 

difference) using Cohen's Test (d). The sample size was 

determined indirectly by the inverse of the standard 

error (1/Standard Error). This graph showed 

symmetrical behavior, not suggesting a significant risk 

of bias, both among studies with small sample sizes 

(lower precision) that are shown at the base of the 

graph and in studies with large sample sizes that are 

shown in the upper region.  

 

Figure 2. The symmetrical funnel plot suggests no risk 

of bias among the studies with small sample sizes that 

are shown at the bottom of the graph. High confidence 

and high recommendation studies are shown above the 

graph (NTotal=52 clinical studies evaluated in full in the 

systematic review).  

 
Source: Own authorship. 

 

Main Results  

MicroRNAs (miRs) are small regulatory RNA 

transcripts capable of post-transcriptionally silencing 

mRNA messages. miRs are involved in the regulation of 

cellular processes by producing, eliminating, or repairing 

damage caused by reactive oxygen species, and are 

active players in redox homeostasis. Increased 

mitochondrial biogenesis, function, and hypertrophy of 

skeletal muscle are important adaptive responses to 

regular exercise. There are redox-sensitive regulatory 

functions of miRs [29].   

In this regard, it is noteworthy that severe 

inflammation and disturbed myogenic differentiation are 

the main obstacles to skeletal muscle healing after 

injury. miRs play an important role as regulatory 

molecules during the muscle healing process, but the 

detailed mechanism of miR-mediated intercellular 

communication between myoblasts and macrophages 

remains unclear. Myoblasts are known to secrete miR-

enriched exosomes in the inflammatory environment, 

through which miR-224 is transferred to macrophages 

to inhibit M2 polarization.   

Additional data demonstrate that WNT-9a may be 
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a direct target of miR-224 for macrophage polarization. 

In turn, the M1 macrophage secretome impairs 

myogenic differentiation and promotes proliferation. 

The elevation of exosome-derived miR-224 is caused by 

activation of the key factor E2F1 in myoblasts and 

demonstrates the RB/E2F1/miR-224/WNT-9a axis. In 

vivo, results have shown that treatment with antagomir-

224 or liposomes containing miR-224 inhibitors 

suppresses fibrosis and improves muscle recovery [30]. 

In addition, the transforming growth factor-β (TGF-

β)/Smad pathway has been found to play an important 

role in inhibiting myogenesis, a key stage in skeletal 

muscle regeneration. MicroRNA-122-5p (miR-122) has 

also been shown to negatively regulate the TGF-β/Smad 

pathway. miR-122 may also be involved in the process 

of skeletal muscle myogenesis by regulating the TGF-

β/Smad pathway.   

In this regard, a study investigated the impact of 

miR-122 on skeletal muscle myogenesis and explored its 

underlying mechanism. The results showed that miR-

122 and myogenic markers were downregulated in 

C2C12 cells after TGF-β stimulation and overexpression 

of miR-122 could restore myogenesis inhibited by TGF-

β. Furthermore, it was found that the effect of miR-122 

overexpression could be rescued by TGFBR2 

overexpression [31].  

A study evaluated the impact of different exercise 

modalities on the plasma concentration of miRNA-126, 

as a marker of endothelial damage. The plasma 

concentration of miRNA-126 and miRNA-133 (a marker 

of muscle damage) was assessed by qRT-PCR analysis 

in plasma samples from healthy individuals performing 

one of the following exercise tests: (1) symptom-limited 

maximal exercise test, (2) 4-hour cycling, (3) marathon 

running, and (4) endurance exercise. A symptom-limited 

maximal exercise test resulted in a significant increase 

in circulating miRNA-126 at maximal power (2.1-fold 

versus baseline), while miRNA-133 concentration 

remained unchanged. In line, four hours of cycling 

increased plasma miRNA-126 concentration with a 

maximum of 30 min after start (4.6-fold versus baseline) 

with no impact on miRNA-133 concentration. Finishing 

a marathon increased both miRNA-126 and miRNA-133. 

In contrast, eccentric endurance training led to an 

isolated increase in miRNA-133 level (2.1-fold versus 

baseline) with unchanged miRNA-126 [32].  

  

Main Cellular and Molecular Processes of 

Regeneration  

In this scenario, adult stem cells, such as 

mesenchymal stem cells (MSCs), are an alternative for 

cell therapy and human tissue engineering, since it has 

been found that they have a high degree of plasticity, 

with the capacity for self-renewal and differentiation into 

specialized progenitors [33].  

In this aspect, MSCs are primordial mesodermal 

cells present in all tissues and are capable of 

differentiating in vitro and in vivo into different cell 

types. Their therapeutic potential is mainly explained by 

the production of bioactive molecules, which provide a 

regenerative microenvironment in injured tissues [34]. 

Furthermore, MSCs secrete a cascade of cytokines and 

growth factors with paracrine, autocrine and endocrine 

activities, such as Il-6, Il-7, Il-8, Il-11, Il-12, Il-14, Il-15, 

macrophage colony-stimulating factor (M-CSF), Flt-3 

ligand and Stem Cell Factor (SCF), leukemia inhibitory 

factor (LIF), granulocyte colony-stimulating factor (G-

CSF) and granulocyte-macrophage colony-stimulating 

factor (GM-CSF). These factors, when combined, can 

produce a series of responses from the local immune 

system, stimulating angiogenesis and inducing the 

proliferation and differentiation of mesenchymal stem 

cells in the desired tissue [35]. In addition, MSCs induce 

the expression of junction proteins and increase 

microvascular integrity and nitric oxide (NO) production 

by macrophages [34]. The stromal vascular fraction 

(SVF) from MSCs is a heterogeneous mixture of cells, 

including fibroblasts, pericytes, endothelial cells, blood 

cells, and adipose-derived mesenchymal stem cells 

(ADMSCs).  

In addition, exosomes stand out along with ADMS. 

Exosomes are extracellular vesicles measuring 40–100 

nm in diameter and with a density of 1.13–1.19 g/mL, 

containing proteins, mRNAs, miRNAs, and DNAs. 

Exosomes change the biochemical characteristics of 

recipient cells through the delivery of biomolecules and 

play a role in cellular communication. These vesicles are 

produced from body fluids and different cell types. 

Evidence suggests that CTMA-derived exosome (CTMA-

EXO) exhibits similar functions to CTMA with low 

immunogenicity and no tumorigenesis [36]. In this 

regard, the composition of exosomes differs based on 

their sources. The protein and lipid content of exosomes 

was measured by various methods such as 

fluorescence-activated cell sorting, Western blotting, 

mass spectrometry, and immunoelectron microscopy. In 

this regard, Rabs and Annexin, including Annexin I, II, 

V, and VI, are cytosolic proteins present in exosomes 

that contribute to the formation of exosome docking, 

membrane fusion, and kinetic regulation of cytoskeletal 

membranes. In addition, adhesion molecules such as 

intercellular adhesion molecule-1, CD11a, CD11b, 

CD11c, CD18, CD9, adipose tissue globule EGF-factor 

VIII (AGM-E8), CD58, CD146, and CD166 have also 

been identified in exosomes [37]. Exosomes also contain 

heat shock proteins (Hsp70 and Hsp90), which facilitate 

the loading of peptides onto MHC I and II [38,39].  

In addition, exosomes contain non-coding RNAs or 
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fragments, including overlapping RNA transcripts, 

protein-coding region, structural RNAs, transfer RNA 

fragments, YRNAs, short hairpin RNAs, small interfering 

RNAs (siRNAs), microRNA (miRNA), messenger RNA 

(mRNA), and DNA [40]. Regarding miRNA, exosomes 

contain miR-1, miR-15, miR-16, miR-17, miR-18, miR-

181, and miR-375 [41]. Furthermore, several cytokines, 

such as Tumor Necrosis Factor-α (TNF-α), 

GranulocyteMacrophage Colony-Stimulating Factor 

(GMCSF), Interleukin (IL)-2, IL-6, IL-8, IL-10, IL-15, IL-

1β, are expressed in exosomes [42].  

These biological signals attract bone-forming cells to 

the recipient site. Growth factors and other proteins are 

some biological signals that may be involved in new bone 

formation and tissue remodeling. In addition, through 

chemotaxis, there is migration of bone-forming cells to 

the application area, since the stimulation of cell 

migration occurs in response to chemical stimuli [43-45]. 

 

Relationship between Skeletal Muscle, Nutrients 

and Regenerative Processes  

Metabolism encompasses the interactions between 

diet, the microbiome, and cellular enzymatic processes 

that generate the chemical pathways necessary to 

maintain life. The small intestine, comprising the 

duodenum, jejunum, and ileum, is the organ that self-

renews most rapidly in men. The small intestine exhibits 

specific metabolites with higher levels of fatty acid 

oxidation occurring in the upper part of the small 

intestine and decreasing distally towards the ileum 

[15,16]. High rates of intestinal self-renewal are enabled 

by intestinal stem cells (LGR5+) at the base of intestinal 

crypts [16]. Cells in the intestine can communicate via 

metabolic signals, with differentiated Paneth cells 

secreting lactate to support the LGR5+ function [15,45].  

In this sense, the balance between LGR5+ and 

differentiated cell fate may also be affected by cell-

intrinsic changes in central carbon metabolism. The 

mitochondrial pyruvate carrier (MPC), comprising the 

MPC1 and MPC2 subunits, is required for interspecies 

oxidation of pyruvate, allowing pyruvate entry into 

mitochondria. Genetic deletion of the MPC1 subunit or 

inhibition of MPC biases cellular metabolism toward 

glycolysis and increases LGR5+ proliferation. 

Overexpression of MPC1/MPC2 reduces the activity of 

LGR5+ [15,16,24].  

A recent study demonstrated that the expression of 

the enzyme 3-hydroxy-3methylglutaryl-CoA synthase 

(Hmgcs2), which regulates the rate-limiting step in 

ketone body synthesis, is enriched in LGR5+. Loss of 

Hmgcs2 impairs regeneration and promotes 

promiscuous differentiation to the Paneth cell lineage. 

The ketone body β-hydroxybutyrate inhibits class I 

histone deacetylases to increase transcriptional 

activation of Notch signaling and maintain stem cell self-

renewal [24].  

In addition, the intestine constantly encounters 

nutrients derived from the diet and is therefore 

responsive to nutrient types [14]. For example, studies 

in patient-derived normal and tumor intestinal organoids 

have shown that vitamin D levels can shift the balance 

between stem cell fates and differentiation [1,2]. Thus, 

LGR5+ activity, including proliferation and 

differentiation rates, is affected by major shifts in 

nutrient availability, such as high-fat diet or fasting. 

Physical activity, endogenous metabolites, and dietary 

nutrients can directly influence epigenetic enzymes. 

Epigenetic modifications to DNA and histone proteins 

alter cell fate by controlling chromatin accessibility and 

downstream gene expression patterns [24]. Thus, many 

substrates and cofactors for chromatinmodifying 

enzymes are derived from metabolic pathways involving 

the tricarboxylic acid cycle, the methionine cycle, the 

folate cycle, glycolysis, β-oxidation, and the hexosamine 

pathway. These metabolites can serve as activators or 

inhibitors of epigenetic writers, such as Jumonji C (JmjC) 

domain-containing proteins, DNA methyltransferases 

(DNMTs), histone acetyltransferases (HATs), ten-eleven 

translocase DNA demethylases (TETs), and histone 

deacetylases (HDACs). In this sense, metabolites can 

influence nutrient-sensing signaling pathways [24].  

In this way, the mechanistic target of rapamycin 

complex 1 (mTORC1) can be activated by growth factor-

induced signaling only when the amino acids arginine 

and leucine, as well as the cofactor S-adenosyl 

methionine (SAM), are sensed within the cell. 

Furthermore, the energy balance communicated 

through the cellular AMP/ADP-ATP ratio can be sensed 

by AMP-activated protein kinase (AMPK). Furthermore, 

transcription factors can be directly regulated by 

metabolites, for example, the tryptophan metabolite 

kynurenine is an endogenous aryl hydrocarbon receptor 

agonist and alpha-ketoglutarate (α-KG) binds to and 

activates IKKβ and initiates NF-κβ signaling [46].  

In this scenario, dietary manipulations and 

metabolites may affect tissue stem cell fate decisions, 

as highlighted in the small intestine (intestinal stem cells 

(LGR5+)), hematopoietic system (hematopoietic stem 

cells (HSCs), liver, muscle (muscle stem cells/satellite 

cells), and hair follicles (hair follicle stem cells (HFSCs). 

For example, in HFSCs, mitochondrial pyruvate carrier 1 

(MPC1) and lactate dehydrogenase (LDHA) regulate the 

balance between telogen and anagen during the hair 

cycle. In LGR5+, 3-hydroxy-3-methylglutaryl-CoA 

synthase (Hmgcs2) is highly expressed while MPC1/2 is 

expressed at low levels. A ketogenic or high-glucose diet 

regulates the balance of LGR5+ self-renewal. HSC self-

renewal and differentiation can be regulated by 
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manipulating vitamin C, A, or D levels and by valine 

restriction [46].  

Regarding muscle regeneration, a diet rich in 

nicotinamide riboside can increase muscle stem cell 

numbers and function in a histone deacetylase (SIRT1)-

dependent manner. Muscle stem cells, termed satellite 

cells, are responsible for maintaining adult muscle mass 

and repair after injury. Several studies have 

demonstrated how changes in innate metabolism 

interfere with satellite stem cell differentiation into 

mature myocytes [15]. For example, single-cell histone 

acetylation mapping has shown that acetylation levels 

tend to be low in quiescent cells. In this context, a study 

found that isolated quiescent muscle stem cells express 

fatty acid oxidation enzymes/transporters, however, as 

they exit quiescence and enter the cell cycle for 

proliferation, a metabolic transition occurs to favor 

glycolysis [15,16]. In this sense, SIRT1 is a target of 

increased glycolysis. SIRT1 represses the expression of 

maturity-specific skeletal muscle genes, as well as genes 

involved in mitochondrial biogenesis. Enhanced 

glycolysis depletes NAD+, a key metabolic cofactor of 

SIRT1, reducing SIRT1 activity and promoting 

downstream activation of these mature muscle-specific 

genes and differentiation [15].  

Metabolic pathways and chromatin modifications 

are intimately linked, and therefore, many changes in 

metabolism influence epigenetic changes and alter gene 

expression. For example, signaling pathways including 

mTORC, AMPK, MAPK, and others are all sensitive to 

changes in nutrient levels. Furthermore, transcription 

factors are directly regulated by metabolites. 

Furthermore, it is possible that the transcriptional 

machinery itself also responds to nutrients, for example, 

RNA polymerase II is modified by O-GlcNAc, a 

metabolite derived from the hexosamine biosynthesis 

pathway [47-49].  

Thus, epigenetic signaling pathways and 

transcription are affected by altered nutrient levels. 

Furthermore, a focus of the literature on stem cell 

metabolism has centered on central carbon metabolism 

and the balance between glycolysis and oxidative 

phosphorylation in regulating cell fate [49,50]. 

Therefore, future research defining the dietary and 

metabolic control of cell fate decisions in muscle tissues 

will be of great importance in the fields of metabolism 

and regenerative medicine [51-55].  

  

Conclusion  

It was concluded that miRs play an important role 

as regulatory molecules during the muscle healing 

process. Myoblasts are known to secrete miR-enriched 

exosomes in the inflammatory environment, through 

which miR-224 is transferred to macrophages to inhibit 

M2 polarization. Additional data demonstrate that WNT-

9a may be a direct target of miR-224 for macrophage 

polarization. The results showed that miR-122 and 

myogenic markers were downregulated in C2C12 cells 

after TGF-β stimulation and overexpression of miR-122 

could restore TGF-β-inhibited myogenesis. Evidence 

suggests that mesenchymal stem cell-derived exosome 

exhibits mesenchymal stem cell-like functions with low 

immunogenicity and no tumorigenesis. High rates of 

intestinal self-renewal are enabled by intestinal stem 

cells (LGR5+) at the base of intestinal crypts. LGR5+ 

activity, including proliferation and differentiation rates, 

is affected by major shifts in nutrient availability, such 

as high-fat diet or fasting. Physical activity, endogenous 

metabolites, and dietary nutrients can directly influence 

epigenetic enzymes. Dietary manipulations and 

metabolites can affect tissue stem cell fate decisions. 

Self-renewal and differentiation of mesenchymal stem 

cells can be regulated by manipulating vitamin C, A, or 

D levels and by valine restriction. 
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