Major considerations and outcomes of clinical studies on the treatment of temporomandibular disorders using prostheses: a systematic review

Vitor Eberharte Gubert1,2*, Viccenzo Mercante1,2, Victor Hugo Bernardes Polidoro1,2, Janaina Cardoso Moreira1,2

1 UNorte - University Center of Northern São Paulo, Dentistry Department, São José do Rio Preto, São Paulo, Brazil.
2 UNIPos - Post Graduate and Continuing Education, Dentistry Department, São José do Rio Preto, São Paulo, Brazil.

*Corresponding author: Vitor Eberharte Gubert.
Unorte/Unipos - Postgraduate and continuing education, Sao Jose do Rio Preto, Sao Paulo, Brazil.
E-mail: vitoreberharte@gmail.com
DOI: https://doi.org/10.54448/mdnt24207
Received: 02-15-2024; Revised: 04-28-2024; Accepted: 05-03-2024; Published: 05-06-2024; MedNEXT-id: e24207
Editor: Idiberto José Zotarelli Filho, MSc., Ph.D., Post-Doctoral.

Abstract

Introduction: The temporomandibular joint (TMJ) can be affected by end-stage pathologies, such as arthritic disease, trauma, and ankylosis. Around 70% of the general population has suffered at least one symptom of temporomandibular disorder (TMD), which constitutes TMJ disease that may be related to the joints, muscles, ligaments, bones, teeth, and psychological aspects. As a treatment, the implantation of a total alloplastic TMJ prosthesis is an innovative approach. Objective: It was to present the main considerations and outcomes of clinical studies on the treatments of temporomandibular disorders using customized or prefabricated prostheses. Methods: The PRISMA Platform systematic review rules were followed. The search was carried out from February to April 2024 in the Web of Science, Scopus, PubMed, Science Direct, Scielo, and Google Scholar databases. The quality of the studies was based on the GRADE instrument and the risk of bias was analyzed according to the Cochrane instrument. Results and Conclusion: A total of 121 articles were found, 40 articles were evaluated in full and 21 were included and developed in the present systematic review study. Considering the Cochrane tool for risk of bias, the overall assessment resulted in 22 studies with a high risk of bias and 10 studies that did not meet GRADE and AMSTAR-2. Most studies did not show homogeneity in their results, with $X^2=57.8%>50%$. It was concluded that stock and CAD/CAM prostheses suggested great improvements in mouth opening and pain reduction as a result of the rehabilitation of TMJ function. The results showed comparable data for both types of prosthesis design at 6 months postoperatively. However, the additional advantages of custom prosthetics, along with increasing access to digital technology, will likely result in custom devices dominating the market in TMJ total joint replacement systems. The custom-made combined prosthesis with custom design and 3D printing fabrication represents a safe and reliable implantable reconstruction method for combined TMJ-skull base injuries.

Keywords: Temporomandibular joint. Temporomandibular disorder. Clinical studies. Customized prostheses. Prefabricated prostheses.
joints, muscles, ligaments, bones, teeth, and psychological aspects. However, TMD can be divided into two large subgroups: those originating from joint problems, that is, those in which the signs and symptoms are related to the TMJ, and those of muscular origin, where their relationship is associated with the structures of the stomatognathic system [3-5].

Furthermore, patients with TMD often suffer from chronic pain, but severe pain can lead to a reduced quality of life. According to studies, around 70% of the general population has suffered at least one symptom of this disorder at some stage in their lives; however, only about 5% of them seek treatment. Furthermore, TMD has a very broad interpretation and represents a population that has been suffering from muscle and/or joint pain. It is observed that women are 4 times more affected by TMD than men [2,5]. As a treatment, the implantation of a total alloplastic TMJ prosthesis is an innovative approach for end-stage TMD [6-8]. There are two types of systems prefabricated (stock) and custom computer-aided design/computer-aided manufacturing (CAD/CAM) devices [5,9-12].

As literary support, a study carried out a systematic review and meta-analysis on TMJ prosthesis as a treatment option after mandibular condyle fracture, showing that TMJ prosthesis appears to be reserved for patients with persistent pain, bony or fibrous ankylosis or osteomyelitis after primary closed or open treatment of mandibular condyle fractures [13].

Therefore, the present study aims to present the main considerations and outcomes of clinical studies on the treatments of temporomandibular disorders using customized or prefabricated prostheses.

Methods

Study Design

The present study followed the international systematic review model, following the rules of PRISMA (preferred reporting items for systematic reviews and meta-analysis). Available at: http://www.prisma-statement.org/?AspxAutoDetectCookieSupport=1. Accessed on: 03/10/2024. The methodological quality standards of AMSTAR-2 (Assessing the methodological quality of systematic reviews) were also followed. Available at: https://amstar.ca/. Accessed on: 03/10/2024.

Data Sources and Research Strategy

The literary search process was carried out from February to April 2024 and was developed based on Web of Science, Scopus, PubMed, Lilacs, Ebsco, Scielo, and Google Scholar, covering scientific articles from various to the present. The descriptors (MeSH Terms) were used: “Temporomandibular joint. Temporomandibular disorder. Clinical studies. Customized prostheses. Prefabricated prostheses”, and using the Boolean "and" between the MeSH terms and "or" between historical discoveries.

Study Quality and Risk of Bias

Quality was classified as high, moderate, low, or very low in terms of risk of bias, clarity of comparisons, precision, and consistency of analyses. The most evident emphasis was on systematic review articles or meta-analyses of randomized clinical trials, followed by randomized clinical trials. The low quality of evidence was attributed to case reports, editorials, and brief communications, according to the GRADE instrument. The risk of bias was analyzed according to the Cochrane instrument by analyzing the Funnel Plot graph (Sample size versus Effect size), using the Cohen test (d).

Results and Discussion

Summary of Findings

A total of 121 articles were found that were subjected to eligibility analysis, with 21 final studies being selected to compose the results of this systematic review. The studies listed were of medium to high quality (Figure 1), considering the level of scientific evidence of studies such as meta-analysis, consensus, randomized clinical, prospective, and observational. The biases did not compromise the scientific basis of the studies. According to the GRADE instrument, most studies showed homogeneity in their results, with $X^2=57.8\%>50\%$. Considering the Cochrane tool for risk of bias, the overall assessment resulted in 22 studies with a high risk of bias and 10 studies that did not meet GRADE and AMSTAR-2.

Figure 1. Article selection and exclusion process.

Source: Own authorship.
Figure 2 presents the results of the risk of bias of the studies using the Funnel Plot, showing the calculation of the Effect Size (Magnitude of the difference) using the Cohen Test (d). Precision (sample size) was determined indirectly by the inverse of the standard error (1/Standard Error). This graph had a symmetrical behavior, not suggesting a significant risk of bias, both between studies with a small sample size (lower precision) that are shown at the bottom of the graph and in studies with a large sample size that are presented at the top.

Figure 2. The symmetric funnel plot suggests no risk of bias among the small sample size studies that are shown at the bottom of the graph. High confidence and high recommendation studies are shown above the graph (n=21 studies).

![Funnel Plot](image)

Source: Own authorship.

Major Clinical Outcomes

TMD can manifest itself in the chewing muscle, TMJ, ear, mouth, tooth, and skull. The change in masticatory muscles caused by TMD is characterized by pain associated with the soft and hard tissues of the head, face, neck, and other intraoral structures [14]. The etiology is multifactorial and TMJ problems can be divided into muscle disorders, and joint disorders, with muscle disorders affecting chewing muscles, including myofascial pain, myositis, and trismus, while joint pain encompasses problems that occur within the joint capsule, and these changes are in the shape of the articular surfaces due to remodeling of the articular disc surfaces causing disc displacements [15].

Added to this, TMD has a direct impact on the lives of people who are affected by this type of injury. This pain affects the daily lives and work activities of these people, reducing their quality of life and productivity. Other problems that may occur are ear pain (otalgia), sensation of ear fullness, sensation of decreased hearing acuity, tinnitus, dizziness, and vertigo [16].

Limitation of mandibular movements, abnormal static and dynamic occlusion may also occur, and there may also be the presence of joint noises (such as clicking and/or crepitus) [16]. The click may or may not occur with pain and with a double click when opening and closing the mouth, which characterizes a displacement of the articular disc with possible reduction, and the asymptomatic silent articulation with limitation of mouth opening is an indication of a possible displacement of the articular disc without reduction. And when recurrent encryption occurs, it is an indication of osteoarthritis. For a correct and accurate diagnosis of TMD, and correct treatment, the assessment of all symptoms aligned with teamwork is essential for the successful treatment of TMDs, in which each professional will work in their area of competence [17].

In this scenario, the stomatognathic system is extremely important in the physiological interconnection with its constituent elements and the central nervous system (CNS), and the proprioceptors present in the soft tissues, muscles, temporomandibular joint (TMJ), and periodontal membrane. Interference can lead the chewing muscles to adapt their function to protect the SS, taking the jaw to a position with different dental contacts, which can cause damage to the TMJ. This damage can generate parafunction or temporomandibular dysfunction (TMD) [17,18].

While stock devices are prefabricated and available in different standard shapes and sizes, each CAD/CAM component is manufactured using the patient’s individual DICOM (Digital Imaging and Communications in Medicine) data. This system is designed for the patient’s specific situation and should provide a perfect fit. However, the communicating articular surfaces of the fossa and condyle of the implant are standardized, as in the stock system [19-24].

In this aspect, the treatment of TMD is diverse and depends on the type of disease, as well as the duration and subjective level of pain. Alloplastic reconstruction can be advantageous in achieving rapid improvement in symptoms and rapid rehabilitation of masticatory function [25]. Treatment of functional TMD is commonly based on conservative therapy, including physical therapy, pain therapy, and splint therapy [26]. Depending on the severity of the TMD, treatment varies in the degree of surgical invasion. An effective method for achieving rapid improvements in mouth opening and pain reduction is TMJ reconstruction using an alloplastic total prosthetic joint replacement (TJR). This invasive approach is still considered the last resort for the treatment of TMD [27-33].

In this context, the complete resection of the diseased joint and the implantation of a fossa and a condyle component is an invasive and irreversible procedure. There are clear indications for the use of a
TJR ATM, for example, diseases involving bone loss and failure of conservative treatment, restricted mouth opening, occlusal failure, or high levels of pain [17].

In general, two different types of prosthetics for total prosthetic joint replacement of the TMJ (total prosthetic joint replacement, TJR system) are available, the stock system and custom computer-aided design/computer-aided manufacturing (CAD/CAM systems). Stock devices are prefabricated and available in different standard shapes and standard sizes. The CAD/CAM component is manufactured using the patient's individual DICOM data (Digital Imaging and Communications in Medicine). The TJR system is developed for the specific patient situation and must provide a perfect fit. However, the communicating articular surfaces of the fossa and condyle of the implant are standardized, as in the stock system [19].

Also, a study described the customized management of TMJ ankylosis using digitally created 3D cutting and positioning surgical guides to assist in determining the position and dimensions of osteotomies as an auxiliary tool in the management of TMJ ankylosis, enabling the installation of customized prostheses in a single stage. This technique has the advantage of allowing the installation of customized TMJ prostheses in a single stage, allowing greater predictability, shorter surgical time, and lower morbidity, in addition to being relatively simple and easy to handle by young surgeons [34].

Conclusion
It was concluded that stock and CAD/CAM prostheses suggested great improvements in mouth opening and pain reduction as a result of the rehabilitation of TMJ function. The results showed comparable data for both types of prosthesis design at 6 months postoperatively. However, the additional advantages of custom prosthetics, along with increasing access to digital technology, will likely result in combined TMJ-skull base injuries.

CRediT

Author contributions: Conceptualization - Vitor Eberharte Gubert, Viccenzo Mercante, Victor Hugo Bernardes Polidoro; Data curation - Vitor Eberharte Gubert, Viccenzo Mercante; Formal Analysis - Victor Hugo Bernardes Polidoro, Janaina Cardoso Moreira; Investigation - Vitor Eberharte Gubert, Viccenzo Mercante, Victor Hugo Bernardes Polidoro; Methodology - Victor Hugo Bernardes Polidoro; Project administration - Janaina Cardoso Moreira; Supervision - Janaina Cardoso Moreira; Writing - original draft - Vitor Eberharte Gubert; Writing-review & editing - Viccenzo Mercante, Janaina Cardoso Moreira.

Acknowledgment
Not applicable.

Ethical Approval
Not applicable.

Informed Consent
Not applicable.

Funding
Not applicable.

Data Sharing Statement
No additional data are available.

Conflict of Interest
The authors declare no conflict of interest.

Similarity Check
It was applied by Ithenticate®.

Peer Review Process
It was performed.

About The License©
The author(s) 2024. The text of this article is open access and licensed under a Creative Commons Attribution 4.0 International License.

References

