

Ы

Major clinical outcomes of the alveolar ridge preservation post-extraction sockets: a systematic review

Isabelly Lima Rocha^{1,2*}, Monaliza de Souza Amorim^{1,2}, Nathalia Martinez Tigre^{1,2}, Andreia Borges Scriboni^{1,2}

¹ UNORTE - University Center of Northern São Paulo, Dentistry department, São José do Rio Preto, São Paulo, Brazil. ² UNIPOS - Post graduate and continuing education, Dentistry department, São José do Rio Preto, São Paulo, Brazil.

*Corresponding author: Isabelly Lima Rocha. Unorte/Unipos - University Center of Northern São Paulo, Dentistry Department, and Postgraduate and continuing education, Sao Jose do Rio Preto, Sao Paulo, Brazil. E-mail: isa14lima2001@gmail.com DOI: https://doi.org/10.54448/mdnt24S205 Received: 01-11-2024; Revised: 03-16-2024; Accepted: 03-20-2024; Published: 03-23-2024; MedNEXT-id: e24S205

Abstract

Introduction: After tooth extraction, the alveolar ridge will commonly decrease in volume and change morphologically. These changes can be difficult or even impede the placement of dental implants and prosthetic rehabilitation. Minimizing bone remodeling means optimizing the esthetics and functional aspects, and mainly, the success of implant treatment. To avoid residual ridge resorption different techniques and bone graft materials have been proposed. Objective: It was to evaluate the efficiency of the many techniques of extraction socket treatment in the alveolar ridge dimension preservation. Methods: The PRISMA Platform systematic review rules were followed. The search was carried out from November 2023 to February 2024 in the Scopus, PubMed, Science Direct, Scielo, and Google Scholar databases. The quality of the studies was based on the GRADE instrument and the risk of bias was analyzed according to the Cochrane instrument. Results and Conclusion: A total of 158 articles were found, 62 articles were evaluated in full and 34 were included and developed in the present systematic review study. Considering the Cochrane tool for risk of bias, the overall assessment resulted in 28 studies with a high risk of bias and 22 studies that did not meet GRADE and AMSTAR-2. Most studies did not show homogeneity in their results, with X²=63.6%>50%. It was concluded that the application of autologous growth factor concentrate after surgical extraction offers an easy, lowcost, and efficient option for preserving the alveolar ridge. Therefore, the use of autologous growth factor

concentrate by dentists during tooth extractions can be encouraged, especially when preservation of the alveolar ridge is necessary. The present study suggests that the alveolar graft technique may increase the risk of disease transmission, cost, and time of treatment. Several studies have stated that the graft material is not fully incorporated into the newly formed bone, indicating less vital bone tissue. Spontaneous scarring is still the most used feature since, in intact alveoli and small defects, it is a procedure that does not present significant losses that justify the use of edge preservation techniques. In larger defects, techniques after spontaneous healing, such as a block graft, can be used without the drawbacks of alveolar grafting, such as delayed healing and poor bone qualit.

Keywords: Extraction socket. Socket treatment. Alveolar treatment. Alveolar ridge preservation. Bone substitute.

Introduction

Initially designed to solve cases of total edentulism, according to a specific clinical protocol for fixed dental prosthesis, treatment with osseointegrated dental implants however, became a frequent procedure in replacing a single missing tooth and showed predictable results [1-3].

Tooth extraction is a traumatic procedure that usually results in damage to the surrounding alveolar bone and surrounding soft tissues. Others reported that reabsorption appears to be progressive and irreversible and have observed that the alveolar ridge will generally decrease in volume and morphologically alter [3]. They believe that this occurs due to the quantitative and qualitative changes that the edentulous areas of the alveolar process will suffer after tooth extraction [3,4].

This bone remodeling can generate damages that involve the installation, aesthetics, survival, and function of the implant in the long term [5-7]. Especially when aesthetic areas are observed, these changes generate obvious consequences for future treatment with implants [8]. Currently, the success of the treatment is not only evaluated by the survival of the implants but also by the aesthetic and functional results. Thus, we should limit the loss of height and width of the alveolar ridge to the minimum, providing a better area for the placement of dental implants [9].

The preservation of the alveolar ridge performed immediately after tooth extraction can bring benefits such as reducing operating costs for both the patient and the dentist and the need for future surgical interventions. Preventing bone remodeling resulting in physiological resorption and the need for future interventions is certainly more effective, although there are many techniques for increasing the ridge [1,10].

In attempting to neutralize bone remodeling, several approaches have been suggested such as the immediate placement of implants, the use of different graft materials associated or not with the use of occlusive membranes, which would avoid the tendency of soft tissues to invaginate in the alveolus, in addition to without access [11,12].

The maintenance procedures of the postextraction alveolar ridge corroborate for placement of the implant in an esthetic and functionally more favorable position because they are predictable procedures that certainly prevent the depression of the collar [13-16]. Today, fresh extraction cells represent a challenge for the dental surgeon. Much research has been done on the use of synthetic materials to replace, repair, or augment biological tissues. Therefore, a careful evaluation of the risks and benefits of the use of biomaterials should be carried out, with full knowledge by the dental surgeon regarding the characteristics, properties, and concentration of the materials [2-4].

Thus, this systematic review study evaluated the efficiency of the many techniques of extraction socket treatment in the alveolar ridge dimension preservation.

Methods

Study Design

The present study followed the international systematic review model, following the rules of PRISMA

(preferred reporting items for systematic reviews and meta-analysis). Available at: http://www.prismastatement.org/?AspxAutoDetectCookieSupport=1.

Accessed on: 02/16/2024. The methodological quality standards of AMSTAR-2 (Assessing the methodological quality of systematic reviews) were also followed. Available at: https://amstar.ca/. Accessed on: 02/16/2024.

Data Sources and Research Strategy

The literary search process was carried out from November 2023 to February 2024 and was developed based on Scopus, PubMed, Web of Science, Lilacs, Ebsco, Scielo, and Google Scholar, covering scientific articles from various to the present. The descriptors (MeSH Terms) were used: "*Extraction socket. Socket treatment. Alveolar treatment. Alveolar ridge preservation. Bone substitute"* and using the Boolean "and" between the MeSH terms and "or" between historical discoveries.

Study Quality and Risk of Bias

Quality was classified as high, moderate, low, or very low in terms of risk of bias, clarity of comparisons, precision, and consistency of analyses. The most evident emphasis was on systematic review articles or metaanalyses of randomized clinical trials, followed by randomized clinical trials. The low quality of evidence was attributed to case reports, editorials, and brief communications, according to the GRADE instrument. The risk of bias was analyzed according to the Cochrane instrument by analyzing the Funnel Plot graph (Sample size versus Effect size), using the Cohen test (d).

Results and Discussion

Summary of Findings

A total of 158 articles were found that were subjected to eligibility analysis, with 34 final studies being selected to compose the results of this systematic review. The studies listed were of medium to high quality (Figure 1), considering the level of scientific evidence of studies such as meta-analysis, consensus, randomized clinical, prospective, and observational. The biases did not compromise the scientific basis of the studies. According to the GRADE instrument, most studies showed homogeneity in their results, with X^2 =63.6%>50%. Considering the Cochrane tool for risk of bias, the overall assessment resulted in 28 studies with a high risk of bias and 22 studies that did not meet GRADE and AMSTAR-2.

Figure 1. The article selection process by the level of methodological and publication quality.

Source: Own authorship.

Figure 2 presents the results of the risk of bias of the studies using the Funnel Plot, showing the calculation of the Effect Size (Magnitude of the difference) using the Cohen Test (d). Precision (sample size) was determined indirectly by the inverse of the standard error (1/Standard Error). This graph had a symmetrical behavior, not suggesting a significant risk of bias, both between studies with a small sample size (lower precision) that are shown at the bottom of the graph and in studies with a large sample size that are presented at the top.

Figure 2. The symmetric funnel plot suggests no risk of bias among the small sample size studies that are shown at the bottom of the graph. High confidence and high recommendation studies are shown above the graph (n=34 studies).

Source: Own authorship.

Major Clinical Outcomes

A clinical study evaluated the impact of concentrated autologous growth factor (CGF) as a socket filling material and its ridge preservation properties after lower third molar extraction. A total of 60 sides from 30 participants who had completely symmetric bilateral impacted lower third molars were enrolled. The CGF sites showed higher height and width values when compared to the control sites. Bone density showed significantly higher values at CGF sites than at control sites. There was a significant difference between the two sites in the reduction of periodontal pockets [17].

The main purpose of alveolar grafting is to preserve the alveolar ridge anatomy and optimize implant placement in an ideal three-dimensional position required for functional and aesthetic rehabilitation [1,2]. Within the synthetic materials used to fill the alveolus, the deproteined bovine bone (spongy, cortical, or the mixture of both) associated or not to the use of guided tissue regeneration technique seems to be the most common [3-7]. It has been stated that in intact wall alveoli we can use osteoconductive materials and the use of membranes may not be necessary. Guided tissue regeneration techniques, with osteoinductive materials associated or not with the use of regenerative membranes, are used in alveoli with compromised walls or the absence of any wall [12-15].

Significant three-dimensional bone loss was reported in addition to reducing the quality and quantity of keratinized gingiva in alveoli without adequate treatment, emphasizing the importance of using appropriate materials and demonstrating better results with the use of Bio-Oss® compared to NanoBone [16]. Preservation of the collar using deprotected mineral bovine bone (Bio-Oss[®]) and nanocrystalline hydroxyapatite (NanoBone), together with a collagen membrane, reduced alveolar ridge changes after tooth extraction and allowed for a more favorable implant positioning. There was no superiority between histological and histomorphometric materials [18-22].

The deproteinized bovine bone particles inserted into the bone defects can not be fully resorbed and remain around the recipient's bone as inert foreign bodies. The study also cites other authors, who report osteoclastic activity after months of healing, suggesting that over time these particles will remodel and form new bone. This remodeling would occur only 10% per year [23].

A considerable limitation in horizontal and vertical resorption was observed using the preservation of the alveolus with bovine mineral bone and porcine collagen membrane when compared with spontaneous healing, also histologically observing the formation of new bone with large mineralized portion due to the xenograft material [24-27].

The alveolus was filled with a matrix composed of mineralized and demineralized allografts together with an absorbable collagen membrane and histologically

observed bone formation in three healing periods [27-29]. The authors reported that osseointegration occurred independently of the moment of grafting and that the presence, especially at early times, of intense osteoblastic activities, suggesting a permanently active bone regeneration, may have contributed to implant survival [30,31]. In immediate implants, defects of about 1.5 mm between bone walls and implants have shown good spontaneous healing, but to avoid loss of vestibular bone volume, these defects should preferably be filled with biomaterial associated with membranes [31].

Although immediate unit implants offer an increased risk of failure, aesthetic results and marginal peri-implant radiographic bone levels are optimized by filling the defect around immediate unit implants using an inorganic bovine bone substitute (Endobone) with resorbable collagen (OsseoGuard) [32,33].

One study evaluated alveoli with hydroxyapatite, biphasic calcium phosphate, tricalcium phosphate, and alveoli without any type of graft. They observed that bone formation was late in the grafted alveoli with synthetic bone filling and that the healing process was different according to the biodegradation pattern. In addition, they noted that alveoli grafted with tricalcium phosphate had fewer residual particles in all healing periods [29-31].

With current advances in stem cell technology, in the future, it may be possible to regenerate the teeth or maintain the alveolar bone. Promising results were observed with frameworks grown from mesenchymal stem cells of the bone marrow inserted into fresh alveoli [4,34].

Conclusion

It was concluded that the application of autologous growth factor concentrate after surgical extraction offers an easy, low-cost, and efficient option for preserving the alveolar ridge. Therefore, the use of autologous growth factor concentrate by dentists during tooth extractions can be encouraged, especially when preservation of the alveolar ridge is necessary. The present study suggests that the alveolar graft technique may increase the risk of disease transmission, cost, and time of treatment. Several studies have stated that the graft material is not fully incorporated into the newly formed bone, indicating less vital bone tissue. Spontaneous scarring is still the most used feature since, in intact alveoli and small defects, it is a procedure that does not present significant losses that justify the use of edge preservation techniques. In larger defects, techniques after spontaneous healing, such as a block graft, can be used without the drawbacks of alveolar grafting, such as delayed healing and poor bone quality.

Acknowledgement Not applicable.

Ethical Approval Not applicable.

Informed consent Not applicable.

Funding Not applicable.

Data sharing statement No additional data are available.

Conflict of interest

The authors declare no conflict of interest.

Similarity check

It was applied by Ithenticate[®].

Peer Review Process

It was performed.

About the License

© The authors (s) 2024. The text of this article is open access and licensed under a Creative Commons Attribution 4.0 International License.

References

- 1. Alveolar Osteitis in Post-extraction Sockets of First Premolars. Cureus. 2024 Jan 7;16(1):e51816. doi: 10.7759/cureus.51816.
- Couso-Queiruga E, Graham ZA, Peter T, Gonzalez-Martin O, Galindo-Moreno P, Avila-Ortiz G. Effect of periodontal phenotype characteristics on post-extraction dimensional changes of the alveolar ridge: A prospective case series. J Clin Periodontol. 2023 May;50(5):694-706. doi: 10.1111/jcpe.13781.
- Gamal N, Shemais N, Al-Nawawy M, Ghallab NA. Post-extraction volumetric analysis of alveolar ridge contour using subepithelial connective tissue graft in esthetic zone: a randomized controlled clinical trial. Clin Oral Investig. 2023 Nov;27(11):6503-6512. doi: 10.1007/s00784-023-05255-0. Epub 2023 Sep 19.
- Caponio VCA, Baca-González L, González-Serrano J, Torres J, López-Pintor RM. Effect of the use of platelet concentrates on new bone formation in alveolar ridge preservation: a systematic review, meta-analysis, and trial

sequential analysis. Clin Oral Investig. 2023 Aug;27(8):4131-4146. doi: 10.1007/s00784023-05126-8.

- Mardas N, D'aiuto F, Mezzomo L, Arzoumanidi M, Donos N. Radiographic alveolar bone changes following ridge preservation with two different biomaterials. Clin Oral Impl Res, 2011, 22, p. 416–423.
- Bashara H, Wohlfahrt JC, Polyzois I, Lyngstadaas SP, Renvert S, Claffey N. The effect of permanent grafting materials on the preservation of the buccal bone plate after tooth extraction: an experimental study in the dog. Clin Oral Implants Res. 2012 Aug;23(8):911-7. doi: 10.1111/j.1600-0501.2011.02240.x. Epub 2011 Jul 4. PMID: 21722194.
- De Angelis N, Felice P, Pellegrino G, Camurati A, Gambino P, Esposito M. Guided bone regeneration with and without a bone substitute at single post-extractive implants: 1-year postloading results from a pragmatic multicentre randomised controlled trial. Eur J Oral Implantol. 2011 Winter;4(4):313-25. PMID: 22282729.
- Barcelos MJ, Novaes Júnior AB, Conz MB, Harari ND, Vidigal Júnior GM. Diagnosis and treatment of extraction sockets in preparation for implant placement: report of three cases. Braz Dent J. 2008;19(2):159-64. doi: 10.1590/s0103-64402008000200013. PMID: 18568232.
- Barboza E, Zenobio E, Shibli J, Granjeiro JM, Carvalho PSP, Sendyk WR. biomateriais substitutos de osso: de onde viemos, onde estamos, para onde vamos? revista perionews, 2011, 5(4), p. 344-350.
- Aldredge WA, Nejat R. delayed implant procedure using deproteinized bovine bone mineral: a report of 109 consecutive cases. compend contin educ dent, 2011, v. 32, n. 4, p. 66-71.
- 11. Gholami GA, Najafi B, Mashhadiabbas F, Goetz W, NajafI S. clinical, histologic and histomorphometric evaluation of socket preservation using a synthetic nanocrystalline hydroxyapatite in comparison with a bovine xenograft: a randomized clinical trial. clin oral impl res, 2012, 23, p. 1198–1204.
- 12. Vignoletti F, Matesanz P, Rodrigo D, Figuero E, Martin C, Sanz M. Surgical protocols for ridge preservation after tooth extraction. A systematic review. Clin Oral Implants Res. 2012 Feb;23 Suppl 5:22-38. doi: 10.1111/j.16000501.2011.02331.x. PMID: 22211304.
- 13. Vignoletti F, Discepoli N, Müller A, de Sanctis M,

Muñoz F, Sanz M. Bone modelling at fresh extraction sockets: immediate implant placement versus spontaneous healing: an experimental study in the beagle dog. J Clin Periodontol. 2012 Jan;39(1):91-7. doi: 10.1111/j.1600-051X.2011.01803.x. Epub 2011 Oct 23. PMID: 22092670.

- Hämmerle CH, Araújo MG, Simion M; Osteology Consensus Group 2011. Evidence-based knowledge on the biology and treatment of extraction sockets. Clin Oral Implants Res. 2012 Feb;23 Suppl 5:80-2. doi: 10.1111/j.160-00501.2011.02370.x. Erratum in: Clin Oral Implants Res. 2012 May;23(5):641. PMID: 22211307.
- Da Rosa JCM, Da Rosa DM, Zardo CM, Rosa AC, Canullo L. Restauração dentoalveolar imediata pós-exodontia com implante plataforma switching e enxertia. revista implantenews, 2009, v. 6, n. 5, p. 551-558.
- 16. Spinato S, Agnini A, Chiesi M, Agnini AM, Wang HL. Comparison between graft and no-graft in an immediate placed and immediate nonfunctional loaded implant. Implant Dent. 2012 Apr;21(2):97-103. doi: 10.1097/ID.0b013e318248866c. PMID: 22382749.
- Elayah SA, Younis H, Cui H, Liang X, Sakran KA, Alkadasi B, Al-Moraissi EA, Albadani M, Al-Okad W, Tu J, Na S. Alveolar ridge preservation in postextraction sockets using concentrated growth factors: a split-mouth, randomized, controlled clinical trial. Front Endocrinol (Lausanne). 2023 May 17;14:1163696. doi: 10.3389/fendo.2023.1163696.
- Levin BP, Tawil P. Posterior tooth replacement with dental implants in sites augmented with rhBMP-2 at time of extraction--a case series. Compend Contin Educ Dent. 2012 Feb;33(2):104-8, 110; quiz 111-2. PMID: 22545428.
- Peñarrocha-Oltra D, Demarchi CL, Maestre-Ferrín L, Peñarrocha-Diago M, Peñarrocha-Diago M. Comparison of immediate and delayed implants in the maxillary molar region: a retrospective study of 123 implants. Int J Oral Maxillofac Implants. 2012 May-Jun;27(3):604-10. PMID: 22616054.
- 20. Cardaropoli D, Tamagnone L, Roffredo A, Gaveglio L, Cardaropoli G. Socket preservation using bovine bone mineral and collagen membrane: a randomized controlled clinical trial with histologic analysis. Int J Periodontics Restorative Dent. 2012 Aug;32(4):421-30. PMID:

22577648.

- 21. Scheyer ET, Schupbach P, McGuire MK. A histologic and clinical evaluation of ridge preservation following grafting with demineralized bone matrix, cancellous bone chips, and resorbable extracellular matrix membrane. Int J Periodontics Restorative Dent. 2012 Oct;32(5):543-52. PMID: 22754902.
- 22. Al-Hezaimi K, Rudek I, Al-Hamdan KS, Javed F, Nooh N, Wang HL. Efficacy of using a dual layer of membrane (dPTFE placed over collagen) for ridge preservation in fresh extraction sites: a micro-computed tomographic study in dogs. Clin Oral Implants Res. 2013 Oct;24(10):1152-7. doi: 10.1111/j.16000501.2012.02526.x. Epub 2012 Jul 4. PMID: 22762284.
- Margonar R, Queiroz TP, Luvizuto ER, Marcantonio É, Lia RC, Holzhausen M, Marcantonio-Júnior É. Bioactive glass for alveolar ridge augmentation. J Craniofac Surg. 2012 May;23(3):e220-2. doi: 10.1097/SCS.0b013e31824de5a4. PMID: 22627439.
- Agarwal G, Thomas R, Mehta D. Postextraction maintenance of the alveolar ridge: rationale and review. Compend Contin Educ Dent. 2012 May;33(5):320-4, 326; quiz 327, 336. PMID: 22616214.
- 25. Barone A, Orlando B, Cingano L, Marconcini S, Derchi G, Covani U. A randomized clinical trial to evaluate and compare implants placed in augmented versus non-augmented extraction sockets: 3-year results. J Periodontol. 2012 Jul;83(7):836-46. doi: 10.1902/jop.2011.110205. Epub 2011 Dec 5. PMID: 22141358.
- 26. Suaid F, Grisi MF, Souza SL, Palioto DB, Taba M Jr, Novaes AB Jr. Buccal bone remodeling after tooth extraction using the flapless approach with and without synthetic bone grafting. A histomorphometric study in dogs. Clin Oral Implants Res. 2013 Apr;24(4):407-13. doi: 10.1111/clr.12002. Epub 2012 Sep 10. PMID: 22957935.
- 27. Hong JY, Lee JS, Pang EK, Jung UW, Choi SH, Kim CK. Impact of different synthetic bone fillers on healing of extraction sockets: an experimental study in dogs. Clin Oral Implants Res. 2014 Feb;25(2):e30-7. doi: 10.1111/clr.12041. Epub 2012 Sep 13. PMID: 22970654.
- Pagni G, Pellegrini G, Giannobile WV, Rasperini G. Postextraction alveolar ridge preservation: biological basis and treatments. Int J Dent. 2012;2012:151030. doi: 10.1155/2012/151030.

Epub 2012 Jun 12. PMID: 22737169; PMCID: PMC3378971.

- Dalapicula SS, Vidigal JRGM, Conz MB, Cardoso ES. características físicoquímicas dos biomateriais utilizados em enxertias ósseas. uma revisão crítica. implantnews, 2006, v. 3, n. 5, p. 487-491.
- Irinakis T. rationale for socket preservation after extraction of a single-rooted tooth when planning for future implant placement. j can dent assoc, 2006, vol. 72, n. 10, p. 917-922.
- 31. Shakibaie B. comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study. int j periodontics restorative dent, 2013, v. 33, n. 2, p. 222-228.
- 32. Oliveira RB, Silveira RL, Machado RA. uso do enxerto desmineralizado homógeno em alvéolo pós-extração: relato de casos. rev cir traumatol bucomaxilo-fac, 2005, v.5, n.4, p. 31 - 36.
- 33. Dantas TS, Lelis ER, Navesb LZ, Fernandes-Neto AJ, Magalhaes D. Materiais de enxerto ósseo e suas aplicações na odontologia. unopar cient ciênc biol saúde, 2011, 13(2), p. 131-135.
- 34. Peck MT, Marnewick J, Stephen L. Alveolar ridge preservation using leukocyte and platelet-rich fibrin: a report of a case. case reports in dentistry, 2011, p. 1-5.

